COPPER RIVER HYDROACOUSTIC SALMON ENUMERATION STUDIES, 1988 THROUGH 1991 By Steven Morstad Regional Informational Report¹ No.2A92-29 Alaska Department of Fish and Game Division of Commercial Fisheries, Central Region 333 Raspberry Road Anchorage, Alaska 99518 ¹ Contribution C92-08 from the Cordova area office. The Regional Information Report series was established in 1987 to provide an information access system for all unpublished divisional reports. These reports frequently serve diverse ad hoc informational purposes or archive basic uninterpreted data. To accommodate timely reporting of recently collected information, reports in this series undergo only limited internal review and may contain preliminary data; this information may be subsequently finalized and published in the formal literature. Consequently, these reports should not be cited without prior approval of the author or the Division of Commercial Fisheries #### **AUTHOR** Steve Morstad is Prince William Sound Assistant Area Management Biologist for the Alaska Department of Fish and Game, Division of Commercial Fisheries, P.O. Box 669, Cordova, Alaska 99574-0669. #### **ACKNOWLEDGMENTS** The authors wish to acknowledge Mr. Albert Menin, formerly of Bendix Electrodynamics Division and currently a private consultant, for his continued efforts to advance sonar counting technology and his specific assistance to the Miles Lake program. Sonar crew members of past seasons also deserve special recognition for their dedication to the project: Tom Vania, Bill Busher, Dave Norman, Joyce Restad, Kalynn Carlmas and John Richardson. Finally we thank Stephen M. Fried, Regional Research Biologist of Commercial Fisheries Division, for his review and editorial comments on this manuscript. #### TABLE OF CONTENTS | LIST OF TABLES | V | |------------------------|-------------| | LIST OF FIGURES | V | | LIST OF APPENDICES v | 'i | | ABSTRACT vi | ii | | NTRODUCTION | 1 | | METHODS | | | Sonar Operations | 2
3
3 | | RESULTS and DISCUSSION | | | Escapement Enumeration | 4
4 | | LITERATURE CITED | 5 | | APPENDICES 2 | 6 | #### LIST OF TABLES | <u>Table</u> | <u>]</u> | <u>Page</u> | |--------------|--|-------------| | 1. | Daily Sockeye salmon escapement estimates, Miles Lake sonar, 1988 | 6 | | 2. | Water levels at Miles Lake, elevation in meters above sea level, Miles Lake sonar, Copper River, 1982-1991 | 8 | | 3. | Daily Sockeye salmon escapement estimates, Miles Lake sonar, 1989 | 10 | | 4. | Daily Sockeye salmon escapement estimates, Miles Lake sonar, 1990 | 12 | | 5. | Daily Sockeye salmon escapement estimates, Miles Lake sonar, 1991 | 14 | #### LIST OF FIGURES | <u>Figure</u> | <u>e</u> | <u>Page</u> | |---------------|--|-------------| | 1. | Commercial and subsistence fishing areas, Copper River drainage | . 16 | | 2. | North and south bank sonar sites, Miles Lake area, Copper River | . 17 | | 3. | Anticipated and actual daily and cumulative salmon escapement estimates, Miles Lake sonar, 1988 | . 18 | | 4. | Anticipated and actual daily and cumulative salmon escapement estimates, Miles Lake sonar, 1989 | . 19 | | 5. | Anticipated and actual daily and cumulative salmon escapement estimates, Miles Lake sonar, 1990 | . 20 | | 6. | Anticipated and actual daily and cumulative salmon escapement estimates, Miles Lake sonar, 1991 | . 21 | | 7. | Mean sector count percentages for south and north bank counting units through time, Miles Lake sonar project, 1988 | . 22 | | 8. | Mean sector count percentages for south and north bank counting units through time, Miles Lake sonar project, 1989 | . 23 | | 9. | Mean sector count percentages for south and north bank counting units through time, Miles Lake sonar project, 1990 | . 24 | | 10. | Mean sector count percentages for south and north bank counting units through time, Miles Lake sonar project, 1991 | . 25 | #### LIST OF APPENDICES | Apper | <u>l</u> | age | |-------|---|-----| | 1. | Daily salmon escapement estimates, Miles Lake sonar, Copper River, 1978-1991 | 27 | | 2. | Cumulative daily salmon escapement estimates, Miles Lake sonar, Copper River, 1978-1991 | 28 | #### **ABSTRACT** The Miles Lake sonar project began in 1978 to assess annual salmon escapement into the Copper River. Studies conducted during 1988 through 1991 used side scanning sonar equipment deployed on the north and south banks of the Copper River. Counting sites were located near the outlet of Miles Lake approximately 53 km upstream from the commercial fishing district. Escapement estimates for sockeye salmon (*Oncorhynchus nerka*) were 488,398 in 1988, 607,797 in 1989, 581,859 in 1990 and 579,435 in 1991. Use of riverine sonar units which were capable of dividing the sonar beam into 16 monitoring sectors, each with adjustable hit criteria for targets, improved the accuracy of escapement estimates and allowed observations of salmon distribution across the counting transect to be obtained. **KEY WORDS:** Copper River, hydroacoustics, migration, Miles Lake, *Oncorhynchus nerka*, Pacific salmon, riverine sonar, sockeye salmon, side scanning sonar, spawning escapement enumeration #### INTRODUCTION The Copper River drainage (Figure 1) has supported a commercial fishery since the early 1890's and a subsistence life style for the residents of this drainage for many years before that. Five species of pacific salmon spawn in the Copper River. The most abundant species is sockeye salmon which makes up 92 percent of the total run. Coho salmon (O. kisutch) comprise approximately five percent and chinook salmon (O. tshawytscha) make up about three percent of the total run. Populations of pink (O. gorbuscha) and chum (O. keta) salmon are not abundant. There are three major sockeye salmon spawning components in the Copper River system. The most abundant component, referred to as upper Copper River stocks, spawn in Copper River tributaries above Miles Lake. The second component, derived from upper Copper River stocks, is an artificially propagated Gulkana River hatchery stock. The hatchery, which has operated since the early 1970's, produces approximately 225,000 returning adult sockeye salmon. The third component, referred to as lower delta stocks, spawn in systems below the Chugach Mountains, between Eyak Lake and Katalla River. Management of Copper River salmon resources are difficult due to several factors. The Copper River is a cold turbid system draining extensive glaciers originating in the Alaska, Chugach, Wrangell, and St. Elias mountain ranges. Enumerating the escapement within this drainage has been difficult since the main stem Copper River is too turbid to allow visual counting of salmon. While it is possible to survey clear tributary streams, sockeye and chinook salmon reach these months after they have passed through the commercial fishery. Such surveys have little value for inseason management decisions and make it impossible to ensure that minimum escapement levels are achieved. However, post season escapement estimates do provide data to forecast subsequent runs and to establish escapement goals. Inseason escapement estimates first became possible in 1978, with the deployment of a single side scanning sonar salmon counter on the south bank of the Copper River at the outlet of Miles Lake (Mile 49 of the Copper River Highway) approximately 53 km upstream from the commercial fishing zone. In 1979 an additional side scanning unit was installed on the north bank of the river. Information from this project has been used for real time management of both the commercial and personal use fisheries. The Copper River management plan 5AAC 29.360 specifies minimum escapement goals which are based on data obtained from this sonar project (ADF&G 1991). Emergency order regulation of the multi-million dollar commercial fishery as well as subsistence, personal use, and sport fisheries is based on escapement information collected at the Miles Lake sonar site. #### **METHODS** To estimate total escapement, the sonar system must be placed in an area of the river where salmon do not mill and all salmon traveling upriver have a high probability of passing through the sounding beam. An area of the river with a single channel, uniform slope, smooth bottom and adequate current velocity is most desirable. The most suitable location, closest to the river mouth, was found just downstream of Miles Lake. This site is 53 km above the upper commercial district boundary. This section of the river is influenced by two glaciers: Childs Glacier, which is below Miles Lake, and Miles Glacier, which is on the eastern shore of Miles Lake (Figure 2). Although the Copper River Highway provides access to the site, deep snow drifts render the highway impassable well into June most years. Since sonar gear is deployed in the river at the earliest date that breakup conditions allow, other means of transportation to the site prior to the road opening have included track vehicles, snow machines, fixed wing aircraft, chartered helicopters, and the Coast Guard helicopter. #### Sonar Operations The basic adult salmon counter system consists of four main elements: an electronic counting unit, a transducer, an artificial bottom substrate, and an oscilloscope for calibration. The system is powered by a 12 volt battery continuously recharged by a solar panel. Electronic counting units used on this project varied within and between years. Two 16 sector, 1985 Bendix units with adjustable hit criteria by sector are currently used. Two 12 sector 1981, Bendix units with rock inhibiting functions are available to replace 16 sector units which malfunction or are damaged. Transducers operate at 515 KHz
and have alternating beam widths of 2 and 4 degrees. Each transducer is mounted on an underwater stand near the river bank and aimed horizontally across the river so that the beam is perpendicular to the current and slightly off the bottom. This allows monitoring of that portion of river most frequently used by migrating sockeye salmon (Brady, 1986). Each transducer is aimed over either an artificial bottom substrate with a smooth straight surface or the natural river bottom where the slope is smooth and uniform. A permanent artificial substrate has been constructed at the south bank site by embedding a steel rail in concrete to form a uniform surface along the river bottom. The rail also serves as a guide along which the transducer stand is moved in response to water level fluctuations. A minimum water level of 40.1 meters (above sea level) is needed for use of the permanent substrate. When water levels are lower, a portable substrate is used. This consist of an 18 meter length of 20.3 cm diameter aluminum tube which is held in place against the current by cables. Transducer deployment over natural bottom was first tried in 1985 (Brady, 1986). Transducer aiming is executed differently over artificial substrates and natural bottoms. Aiming along the artificial substrate requires a target at the end of the tube. The target used is an aluminum rectangle 30 cm high and 20 cm wide. When the target appears on the oscilloscope, the counting range of the sonar unit is reduced so that it ends just before the target. Aiming is accomplished by adjusting three knobs on the back of the transducer housing while underwater. To count salmon over a natural bottom, the transducer is attached to a tripod. Aiming is controlled by a wheel at the top of the stand which moves the transducer up and down. To direct the beam up- or downriver, the entire tripod is shifted in the desired direction. Each year, frequent adjustments of substrates and transducers have been required on both river banks because of large fluctuations in river level, wave action caused by strong winds, and periods of heavy ice passage. During 1988 through 1990, electronic counting units were calibrated four times each day by visually monitoring targets on the oscilloscope. In 1991, the south bank unit was calibrated every two hours for 30 minutes or until 100 fish were counted, which ever occurred first. The north bank sonar was calibrated every four hours for 30 minutes or until 100 fish were counted (Morstad 1991). #### Species Apportionment Due to similar run timing of chinook and sockeye salmon during May and early June, and since 95 percent of salmon migrating up the Copper River are sockeye, no species apportionment information is collected at the site. Test fishing programs were attempted from 1985 through 1987, but limited locations and small catches demonstrated that test fishing was not practical at Miles Lake (Morstad, 1992). #### Helicopter Charter A U.S. Coast Guard rescue helicopter with a load capacity of 4,000 pounds was used to haul equipment, supplies and personnel into the Miles Lake camp in 1988, 1989 and 1990. In 1991, the project spent \$5,000 to have the Alaska Department of Transportation clear snow and open the highway to vehicle traffic on 15 May. #### RESULTS and DISCUSSION #### Escapement Enumeration In 1988, the sonar project was operated from 19 May to 2 August. Estimated escapement during that time period was 488,398 salmon about six percent above the escapement goal of 458,200 (Table 1). Actual daily counts were similar to anticipated counts during most of season (Figure 3). Water level of the Copper River was below normal, yet escapement was slightly above the anticipated (Table 2). In 1989, the sonar project operated from 17 May to 2 August. Estimated escapement during that time period was 607,797 salmon, 25 percent above the escapement goal (Table 3). Actual daily counts for 1989 were above the anticipated counts throughout the season (Figure 4). Slight decreases in daily escapement occurred which were probably caused by the commercial fishery harvest. The Copper River water level was above normal all season. This may have been a contributing factor to the high escapement levels observed (Table 2). In 1990, the sonar project operated from 21 May to 2 August. Estimated escapement during that time period was 581, 859 salmon, 16 percent above the escapement goal (Table 4). Actual daily counts for 1990 were similar to 1988 and 1989, with actual counts above the anticipated counts throughout most of the season (Figure 5). Slight drops in daily counts again reflected commercial fishing removals which occurred at the mouth of the Copper River. The water level was above normal for 1990, allowing salmon to enter the Copper River earlier than in past years (Table 2). In 1991, the sonar project operated from 21 May to 2 August. Estimated escapement during that time period was 579,435 salmon, 12 percent above the escapement goal (Table 5). Actual daily counts were below anticipated counts until 1 June when daily counts surged from 9,000 to over 16,000 salmon (Figure 6). However, actual cumulative escapement remained below the anticipated level until 20 June. After that date, actual escapement surpassed and remained above anticipated levels for the remainder of the season. Water level was below average until 13 June (Table 2). #### Sector Distribution As observed in previous years, salmon passage during 1988 through 1991 was concentrated near shore in the first three sectors of the sonar beam (Figures 7-10), (Morstad, 1991 and Brady, 1986). #### LITERATURE CITED - ADF&G (Alaska Department of Fish and Game). 1991. Subsistence finfish fishing regulations. Alaska Department of Fish and Game, Juneau. - Brady, J.A. 1986. Copper River hydroacoustic salmon enumeration studies, 1984 and 1985. Alaska Department of Fish and Game Technical data Report No. 183, Division of Commercial Fisheries, Juneau. - Morstad, S. 1991. Miles Lake sonar project operational plan 1991. Alaska Department of Fish and Game, Commercial Fisheries Division, Regional Informational Report No.2C91-12, Anchorage. - Morstad. S., E. Biggs and J. Brady. 1992. Copper River hydroacoustic salmon enumeration studies, 1986-1987. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Informational Report No. 2C91-03, Anchorage. Table 1. Daily sockeye salmon escapement estimates, Miles Lake sonar, 1988. | | | | Estimate | | | Escapement
Objective | | | |----------------------|--------------------|---|--------------------|------------------|--------------------|-------------------------|--|--| | Data | Water | North | South | Doily | Cumulativa | Doily | Cumulative | | | Date | Level ^a | Bank | Bank | Daily | Cumulative | Daily | Cumulative | | | 19 – May | 39.65 | | 313 | 313 | 313 | 1,098 | 2,495 | | | 20-May | 39.65 | | 877 | 877 | 1,190 | 1,197 | 3,692 | | | 21 – May | 39.60 | | 1,440 | 1,440 | 2,630 | 1,247 | 4,939 | | | 22 – May | 39.61 | | 2,256 | 2,256 | 4,886 | 1,297 | 6,236 | | | 23-May | 39.64 | | 5,078 | 5,078 | 9,964 | 2,070 | 8,306 | | | 24 – May | 39.67 | | 11,033 | 11,033 | 20,997 | 3,207 | 11,513 | | | 25-May | 39.75 | | 9,979 | 9,979 | 30,976 | 3,534 | 15,047 | | | 26-May | 39.78 | | 8,946 | 8,946 | 39,922 | 3,970 | 19,017 | | | 27 – May | 39.82 | | 13,247 | 13,247 | 53,169 | 5,921 | 24,938 | | | 28 – May | 39.87 | 345 | 13,856 | 14,201 | 67,370 | 9,295 | | | | 29 – May | 40.00 | 513 | 9,509 | 10,022 | 77,392 | 5,923 | 40,156 | | | 30 - May | 40.12 | 381 | 6,425 | 6,806 | 84,198 | 8,399 | 48,555 | | | 31-May | 40.14 | 821 | 6,765 | 7,586 | 91,784 | 10,464 | 59,020 | | | 01-Jun | 40.16 | 498 | 4,707 | 5,205 | 96,989 | 10,324 | 69,344 | | | 02-Jun | 40.26 | 378 | 3,180 | 3,558 | 100,547 | 12,633 | | | | 03-Jun | 40.32 | 239 | 4,387 ^b | 4,626 | 105,173 | 11,892 | 93,869 | | | 04-Jun | 40.35 | 741 |
7,136 | 7,877 | 113,050 | 13,922 | 107,790 | | | 05-Jun | 40,61 | 469 | 6,286 | 6,755 | 119,805 | 15,506 | | | | 06-Jun | 40.82 | 394 | 8,501 | 8,895 | 128,700 | 13,904 | | | | 07-Jun | 41.15 | 163 | 8,933 | 9,096 | 137,796 | 13,168 | • | | | 08-Jun | 41.48 | 223 | 11,099 | 11,322 | 149,118 | 14,855 | | | | 09-Jun | 41.80 | 537 | 14,104 | 14,641 | 163,759 | 14,770 | | | | 10-Jun | 42.00 | 624 | 14,592 | 15,216 | 178,975 | 13,023 | | | | 11-Jun | 42.19 | 833 | 15,422 | 16,255 | 195,230 | 12,402 | | | | 12-Jun | 42.36 | 983 | 13,976 | 14,959 | 210,189 | 10,052 | | | | 13-Jun | 42.45 | 732 | 10,019 | 10,751 | 220,940 | 9,442 | | | | 14-Jun | 42.64 | 811 | 8,571 | 9,382 | 230,322 | 9,020 | | | | 15-Jun | 42.80 | 542 | 9,368 | 9,910 | 240,232 | 9,035 | | | | 16-Jun | 42.99 | 421 | 6,063 | 6,484 | 246,716 | 8,680 | | | | 17-Jun | 42.90 | 384 | 4,526 | 4,910 | 251,626 | 8,637 | | | | 18-Jun | 42.56 | 698 | 5,771 | 6,469 | 258,095 | 7,706 | | | | 19-Jun | 42.32 | 454 | 7,401 | 7,855 | 265,950 | 6,110 | | | | 20-Jun | 42,53 | 372 | 7,580 | 7,952 | 273,902 | 5,386 | | | | | 42.25 | 507 | | | 279,672 | | | | | 21 – Jun
22 – Jun | 41.82 | 386 | 5,263
6,599 | 5,770
6,985 | 286,657 | 5,484
5,811 | | | | | | | | | | 6,615 | - | | | 23-Jun
24-Jun | 41.73 | 409
410 | 7,290
5,172 | 7,699
5,582 | 294,356 | 6,801 | | | | | 41.68 | 000000000000000000000000000000000000000 | 5,172
5,332 | | 299,938
305,535 | | | | | 25-Jun | 41.68 | 265
360 | 5,332
6,000 | 5,597
6 2 7 9 | 305,535 | 6,374 | | | | 26-Jun | 41.55 | 369 | 6,009
6,301 | 6,378
6,550 | 311,913 | 5,325 | | | | 27-Jun | 41.79 | 268 | 6,291 | 6,559 | 318,472 | 4,455 | | | | 28-Jun | 41.79 | 196 | 6,063 | 6,259 | 324,731 | 4,224 | | | | 29-Jun | 41.73 | 127 | 8,093 | 8,220 | 332,951 | 4,237 | to the time that is the first that the transfer to the contract of contrac | | | 30-Jun | 41.82 | 242 | 6,255 | 6,497 | 339,448 | 3,970 | 332,78 | | Table 1. (page 2 of 2). | | | | Estimate | 1 | | Escape
Objecti | | |------------------|---------|--------|----------|---------|------------|---------------------------------------|------------| | | Water — | North | South | | | Objecti | ve | | Date | Level a | Bank | Bank | Daily | Cumulative | Daily | Cumulative | | 01-Jul | 41.99 | 155 | 5,447 | 5,602 | 345,050 | 4,081 | 336,863 | | 02-Jul | 42.29 | 108 | 4,572 | 4,680 | 349,730 | 4,882 | | | 03-Jul | 42.51 | 166 | 4,056 | 4,222 | 353,952 | 5,034 | 346,780 | | 04-Jul | 42.66 | 178 | 3,354 | 3,532 | 357,484 | 5,884 | 352,664 | | 1uL-20 | 42.95 | 151 | 3,153 | 3,304 | 360,788 | 4,778 | 357,442 | | 06-Jul | 43.08 | 177 | 3,333 | 3,510 | 364,298 | 4,464 | 361,905 | | 07-Jul | 43.06 | 81 | 4,243 | 4,324 | 368,622 | 4,148 | 366,053 | | 08-Jul | 42.94 | 194 | 8,305 | 8,499 | 377,121 | 3,951 | 370,004 | | 09-Jul | 42.72 | 181 | 4,986 | 5,167 | 382,288 | 4,211 | 374,216 | | 10-Jul | 42.53 | 254 | 6,093 | 6,347 | 388,635 | 5,404 | 379,620 | | 11-Jul | 42.72 | 329 | 7,291 | 7,620 | 396,255 | 4,577 | 384,197 | | 12-Jul | 42.73 | 301 | 7,580 | 7,881 | 404,136 | 4,555 | 388,75 | | 13-Jul | 42.66 | 325 | 6,762 | 7,087 | 411,223 | 3,809 | 392,562 | | 14-Jul | 42.64 | 248 | 6,764 | 7,012 | 418,235 | 4,297 | 396,85 | | 15-Jul | 42.72 | 248 | 6,676 | 6,924 | 425,159 | 4,467 | 401,32 | | 16-Jul | 43.03 | 202 | 5,255 | 5,457 | 430,616 | 4,628 | 405,95 | | 17-Jul | 43.18 | 247 | 4,630 | 4,877 | 435,493 | 4,264 | 410,217 | | 18-Jul | 43.18 | 121 | 3,736 | 3,857 | 439,350 | 5,106 | 415,32 | | 19-Jul | 43.24 | 170 | 4,413 | 4,583 | 443,933 | 6,062 | 421,38 | | 20-Jul | 43.53 | 178 | 4,305 | 4,483 | 448,416 | 5,951 | 427,33 | | 21-Jul | 43.40 | 154 | 3,810 | 3,964 | 452,380 | 4,668 | | | 22-Jul | 43.38 | 114 | 2,683 | 2,797 | 455,177 | 3,306 | | | 23-Jul | 43.04 | 149 | 3,280 | 3,429 | 458,606 | 2,814 | | | 24-Jul | 42.70 | 88 | 3,812 | 3,900 | 462,506 | 2,521 | | | 25-Jul | 42.54 | 41 | 3,982 | 4,023 | 466,529 | 2,333 | | | 26-Jul | 42.58 | | 4,142 | 4,142 | 470,671 | 1,717 | | | 27 – Jul | 42.58 | | 3,920 | 3,920 | 474,591 | 1,579 | | | 28-Jul | 42.43 | | 3,452 | 3,452 | 478,043 | • | | | 29-Jul | 42.38 | | 3,476 | 3,476 | 481,519 | | | | 30-Jul | 42.31 | | 2,423 | 2,423 | 483,942 | | | | 31-Jul | 42.33 | | 1,920 | 1,920 | 485,862 | a a a a a a a a a a a a a a a a a a a | | | 31-301
01-Aug | 42.48 | | 1,438 | 1,438 | 487,300 | ********* | ******** | | 02-Aug | 42.81 | | 1,098 | 1,098 | 488,398 | • | • | | Total | | 20,295 | 468,103 | 488,398 | | | | a Meters above mean sea level. b Permanent substrate was used from 3 June to end of project. Table 2. Water levels at Miles Lake, elevation in meters above sea level, Miles Lake sonar, Copper River, 1982 - 1991. | | | | E | levation A | bove Sea I | _evel | | | | | | |----------|-------|-------|-------|------------|------------|-------|-------|-------|-------|-------|----------| | 5 | 4655 | | | 4 | 4 | | | | | | 982-1991 | | Date | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | Average | | 15-May | | | | | | 38.99 | | 40.05 | | | 39,52 | | 16-May | | | | | | | | 40.04 | | | 40.04 | | 17-May | | | | | | 39.09 | | 40.01 | | | 39.55 | | 18-May | | | | | 39.19 | 39.10 | | 40.01 | | | 39.43 | | 19-May | | | | | 39.31 | 39.05 | 39.70 | 40.06 | | | 39.53 | | 20-May | | | 39.05 | | 38.97 | 39.05 | 39.62 | 40.07 | | | 39.35 | | 21 - May | | | 39.08 | | 38.95 | 39.10 | 39.65 | 40.02 | 40.79 | 39.42 | 39.57 | | 22 - May | | | 39.31 | | 39.19 | 39.14 | 39.65 | 40.14 | 40.92 | 39.52 | 39.70 | | 23-May | | | 39.45 | | 39.29 | 39.21 | 39.60 | 40.23 | 40.81 | 39.70 | 39.75 | | 24-May | | 39.39 | 39.48 | | 39.37 | 39.28 | 39.61 | 40.27 | 40.63 | 39.96 | 39.75 | | 25-May | | 39,39 | 39.57 | | 39,38 | 39.29 | 39.64 | 40.16 | 40.48 | 40.17 | 39.76 | | 26-May | | 39.36 | 39.61 | | 39.46 | 39.36 | 39.67 | 40.17 | 40.48 | 40.33 | 39.81 | | 27 – May | | 39.37 | 39.71 | | 39.54 | 39.46 | 39.75 | 40.27 | 40.58 | 40.41 | 39.89 | | 28-May | | 39.39 | 39.75 | 40.28 | 39.60 | 39.46 | 39.78 | 40.42 | 40.77 | 40.51 | 40.00 | | 29-May | | 39.38 | 39.61 | 40.34 | 39.77 | 39.48 | 39.82 | 40.60 | 41.00 | 40.55 | 40.06 | | 30-May | 39.62 | 39.44 | 39.55 | 40.31 | 39.97 | 39.45 | 39.87 | 41.00 | 41.47 | 40.56 | 40.12 | | 31-May | | 39.58 | 39.47 | 40.18 | 39.96 | 39.48 | 40.00 | 41.49 | 41.72 | 40.58 | 40.27 | | 01 – Jun | | 39.94 | 39.46 | 40.03 | 39.97 | 39.76 | 40.12 | 41.82 | 41.00 | 40.51 | 40.29 | | 02-Jun | 40.03 | 40.64 | 39.42 | 39.90 | 39.96 | 39.98 | 40.14 | 41.87 | 42.03 | 40.42 | 40.44 | | 03-Jun | 40.31 | 41.00 | 39.39 | 39.88 | 39.97 | 40.33 | 40.16 | 41.70 | 42.18 | 40.32 | 40.52 | | 04 – Jun | 40.60 | 40.94 | 39.45 | 39.95 | 39.90 | 40.36 | 40.26 | 41.70 | 42.26 | 40.31 | 40.57 | | 05-Jun | 40.72 | 40.94 | 39,61 | 40.18 | 39.88 | 40.30 | 40.32 | 42.02 | 42.45 | 40.38 | 40.68 | | 06-Jun | 40.83 | 40.89 | 39.75 | 40.44 | 39.98 | 40.43 | 40.35 | 42.11 | 42.67 | 40.42 | 40.79 | | 07-Jun | 40.71 | 40.82 | 40.04 | 40.36 | 40.19 | 40.73 | 40.61 | 42.06 | 42.81 | 40.47 | 40.88 | | 08-Jun | 40.69 | 40.82 | 40.34 | 40.11 | 40.43 | 40.88 | 40.82 | 42.00 | 42.98 | 40.55 | 40.96 | | 09-Jun | | 40.85 | 40.36 | 40.03 | 40.46 | 40.69 | 41.15 | 41.89 | 42.96 | 40.60 | 41.00 | | 10-Jun | 41.50 | 40.84 | 40.36 | 40.06 | 40.36 | 40.64 | 41.48 | 41.92 | 42.85 | 40.58 | 41.06 | | 11-Jun | | 40.82 | 40.43 | 40.01 | 40,24 | 40.54 | 41.80 | 41.80 | 42.63 | 40.71 | 41.00 | | 12-Jun | | 40.84 | 40.56 | 40.01 | 40.13 | 40.38 | 42.00 | 41.65 | 42.47 | 40.87 | 40.99 | | 13-Jun | | 40.81 | 40.68 | 40.11 | 40.22 | 40.34 | 42.19 | 41.73 | 42.44 | 41.06 | 41.06 | | 14 Jun | | 40.67 | 40.84 | 40.13 | 40.33 | 40.37 | 42.36 | 41.78 | 42.61 | 41.31 | 41.16 | | 15-Jun | 41.27 | 40.71 | 40.97 | 40.16 | 40.62 | 40.36 | 42.45 | 42.03 | 42.66 | 41.53 | 41.28 | | 16-Jun | | 40.60 | 41.07 | 40.13 | 41.05 | 40.36 | 42.64 | 42.13 | 42.58 | 41.77 | 41.37 | | 17-Jun | 41.06 | 40.75 | 41.05 | 40.13 | 41.58 | 40.44 | 42.80 | 42.02 | 42.52 | 42.00 | 41.43 | | 18-Jun | 40.93 | 40.88 | 40.89 | 40.36 | 41.83 | 40.57 | 42.99 | 41.94 | 42.39 | 42.10 | 41.49 | | 19-Jun | | 40.97 | 40.97 | 40.49 | 41.88 | 40.51 | 42.90 | 42.02 | 42.15 | 42.04 | 41.55 | | 20-Jun | 41.16 | 41,31 | 41.15 | 40.49 | 41.89 | 40.43 | 42,56 | 42.09 | 42,03 | 42.05 | 41.51 | | 21 – Jun | 41.50 | 41.58 | 41.31 | 40.51 | 41.71 | 40.36 | 42.32 | 42.15 | 41.91 | 42.53 | 41.59 | | 22-Jun | 41.54 | 41.85 | 41.66 | 40.34 | 41.54 | 40.70 | 42.53 | 42.22 | 41.92 | 43.14 | 41.74 | | 23-Jun | | 41.95 | 41.76 | 40.39 | 41.43 | 41.18 | 42.25 | 42,34 | 41.93 | 43.69 | 41.88 | | 24-Jun | 41.35 | 42.01 | 41.99 | 40.46 | 41.29 | 41.27 | 41.82 | 42.48 | 42.01 | 44.02 | 41.87 | | 25-Jun | | 42.19 | 42.35 | 40.74 | 41.11 | 41.23 | 41.73 | 42.84 | 42.02 | 44.03 | 42.03 | | 26-Jun | 41.62 | 42.43 | 42.60 | 40.79 | 41.00 | 41.10 | 41.68 | 43.13 | 42.09 | 43.83 | 42.03 | | 27-Jun | | 42.44 | 42.75 | 40.77 | 40.97 | 40.98 | 41.68 | 43.11 | 42.31 | 43.64 | 42.07 | | 28-Jun | 42.39 | 42.43 | 42.58 | 40.97 | 41.17 | 41.28 | 41.55 | 43.01 | 42.59 | 43.57 | 42.15 | | 29-Jun | | 42.60 | 42.37 | 41.20 | 41.52 | 41.00 | 41.79 | 42.98 | 42.96 | 43.66 | 42.23 | | 30-Jun | 42.90 | 42.55 | 42.14 | 41.43 | 41.62 | 41.53 | 41.79 | 43.03 | 43.27 | 43.78 | 42.40 | -Continued- Table 2. (page 2 of 2). | | | | E | levation A | bove Sea I | _evel | | , | | | | |----------|--|---|-------|--|--|---|-------
--|-------|-------|----------| | | | | | | | | | | | | 982-1991 | | Date | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | Average | | 01 Jul | 42.81 | 42.43 | 41.88 | 41.86 | 41.96 | 42.37 | 41.73 | 43.10 | 43.49 | 43.87 | 42.55 | | 02 – Jul | 42.01 | 42.24 | 41.94 | 42.32 | 42.37 | 42.83 | 41.82 | 43.31 | 43.78 | 43.90 | 42.72 | | 03-Jul | 42.57 | 42.33 | 41.91 | 42.55 | 42.61 | 42.85 | 41.99 | 43.49 | 43.76 | 43.77 | 42.78 | | 04 – Jul | 42.18 | 42.51 | 41.91 | 42.62 | 42.70 | 42.91 | 42.29 | 43.41 | 43.71 | 43,76 | 42.80 | | 05-Jul | | 42.60 | 41.96 | 42.62 | 42.85 | 43.04 | 42.51 | 43.43 | 43.71 | 43,53 | 42.92 | | 06-Jul | ******************* | 42.67 | 41.86 | 42.67 | 43.03 | 43.16 | 42.66 | 43.38 | 43.74 | 43.24 | 42.93 | | 07 – Jul | 41.92 | 42.70 | 42.06 | 42.85 | 43.11 | 43.12 | 42.95 | 43.42 | 43.85 | 43.07 | 42.90 | | 08-Jul | | 42.84 | 42.29 | 42.93 | 43.13 | 42.93 | 43.08 | 43.43 | 43.75 | 43.08 | 43.05 | | 09 – Jul | | 42.81 | 42.52 | 42.75 | 43.03 | 42.33 | 43.06 | 43.50 | 43.51 | 43.22 | 42.97 | | 10-Jul | | 42.82 | 42.72 | 42.55 | 42.70 | 42.52 | 42.94 | 43.63 | 43.14 | 43,49 | 42.95 | | 11 – Jul | 42.72 | 42.72 | 42.62 | 42.52 | 42.62 | 42.49 | 42.72 | 43.74 | 42.81 | 43.22 | 42.82 | | 12-Jul | | 42.55 | 42.47 | 42.55 | 42.76 | 42.50 | 42.53 | 43.95 | 42.58 | 43.04 | 42.77 | | 13-Jul | | 42.14 | 42.32 | 42.62 | 42.80 | 42.53 | 42.72 | 44.07 | 42.51 | 42.94 | 42.74 | | 14-Jul | | 41.98 | 42.19 | 42.60 | 42.78 | 42.41 | 42.73 | 44.03 | 42.42 | 42.92 | 42.67 | | 15-Jul | | 41.80 | 42,16 | 42,55 | 42.51 | 42.47 | 42.66 | 43.82 | 42.37 | 42.85 | 42.58 | | 16-Jul | 42,44 | 41.95 | 42.06 | 42.44 | 42.35 | 42.43 | 42.64 | 43.51 | 42.28 | 42.82 | 42.49 | | 17-Jul | ,,, | 42.10 | 41.96 | 42.42 | | 42.47 | 42.72 | 43.20 | 42.12 | 42.96 | 42.49 | | 18-Jul | 42.35 | 42.23 | 41.83 | 42.49 | | 42.35 | 43.03 | 43.14 | 42.50 | 42.86 | 42.53 | | 19-Jul | | 42.46 | 41.96 | 42.49 | | 42.36 | 43.18 | 43.30 | 42.78 | 42.50 | 42,63 | | 20-Jul | 42,39 | 42,55 | 41.99 | 42.60 | | 42.63 | 43,18 | 43.47 | 43.06 | 42.17 | 42.67 | | 21 – Jul | ************************************** | 42.53 | 41.76 | 42.90 | 2,000,000,000,000 | 42.78 | 43.24 | 43.58 | 43.28 | 42.11 | 42.77 | | 22-Jul | | 42.48 | 41.63 | 42.88 | 43.53 | 43.36 | 43.53 | 43.32 | 43.57 | 42.27 | 42.95 | | 23-Jul | 42.09 | 42.27 | 41.61 | 42.62 | 43.41 | 43.51 | 43.40 | 43.14 | 43.62 | 42.41 | 42.81 | | 24-Jul | 42.58 | 42.30 | 41.66 | 42.37 | 43.34 | 43.39 | 43.38 | 43.00 | 43.72 | 42.70 | 42.84 | | 25 Jul | 42.72 | 42.30 | 41.86 | 42.24 | | 43.17 | 43,04 | 42.91 | 43.83 | 42.87 | 42.77 | | 26-Jul | 42.98 | 42.20 | 42.06 | 42.24 | 42.77 | 43.01 | 42,70 | 42.86 | 43.75 | 42.97 | 42.75 | | 27 – Jul | 43.13 | 42.10 | 42.19 | 41.99 | 42.45 | 43.02 | 42.54 | 42.81 | 43.25 | 42.95 | 42.64 | | 28-Jul | 43.09 | 42.23 | 42.29 | 41.99 | 42.22 | 43.16 | 42.58 | 42.75 | 42.90 | 42.90 | 42.61 | | 29 Jul | | 42.51 | 42.29 | 42.11 | 42.01 | 43.23 | 42.58 | 42.87 | 43.15 | 42.82 | 42.62 | | 30 – Jul | | 42.68 | 42.39 | 42.24 | 41.94 | 43.29 | 42.43 | 42.96 | 43.46 | 42.77 | 42.69 | | 31 - Jul | | 42.76 | 42.34 | 42.39 | 41.98 | 43,26 | 42,38 | 43.13 | 43,51 | 42.65 | 42.71 | | 01 – Aug | **************** | 42.79 | 42.39 | 42.55 | 12.1.19.1.12.13.13.15.15.15.11.11 | 43.07 | 42.31 | 43.29 | 43,51 | | 42.84 | | 02-Aug | 43.90 | 42.66 | 42.32 | 42.98 | | 42.98 | 42.33 | 43.37 | 43.51 | | 43,01 | | 03-Aug | 43.84 | 42.61 | 42.34 | 44.35 | | 42.92 | 42.48 | | | | 43.09 | | 04-Aug | | 42.55 | 42.34 | 45.09 | | 42.93 | 42.81 | | | | 43.14 | | 05-Aug | | 42.62 | 42.42 | | | 42.88 | | | | | 42.64 | | 06-Aug | na ny ananana 2000-2000 | nanananan a da kanan a da da | 42.42 | uunnaan 1000000000000000000000000000000000 | A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A. | arana de esta esta esta esta esta esta esta est | | AND TO SERVICE STATE OF THE SE | | | 42.42 | | 07-Aug | | | 42.42 | | | | | | | | 42.42 | | 08-Aug | | | 42.42 | | | | | | | | 42.42 | Table 3. Daily sockeye salmon escapement estimates, Miles Lake sonar, 1989. | | | | Estimate | | | Escapement
Objective | | | |----------|--|------------|--------------------|----------------|--------------------|-------------------------|--|--| | | Water — | North | South | | | Object | | | | Date | Level ^a | Bank | Bank | Daily | Cumulative | Daily | Cumulative | | | 17-May | 40.01 | | 732 | 732 | 732 | 325 | 325 | | | 18-May | 40.01 | | 3,660 | 3,660 | 4,392 | 662 | | | | 19-May | 40.06 | | 6,588 | 6,588 | 10,980 | 1,467 | | | | 20-May | 40.07 | 880 | 6,055 | 6,935 | 17,915 | 1,918 | 4,372 | | | 21 – May | 40.02 | 500 | 4,334 | 4,834 | 22,749 | 2,476 | 6,848 | | | 22 – May | 40.14 | 1,004 | 3,026 | 4,030 | 26,779 | 2,726 | 9,574 | | | 23-May | 40.23 | 793 | 5,679 | 6,472 | 33,251 | 3,523 | 13,097 | | | 24 – May | 40.27 | 983 | 6,465 | 7,448 | 40,699 | 4,944 | 18,041 | | | 25-May | 40.16 | 783 | 3,875 | 4,658 | 45,357 | 5,164 | 23,205 | | | 26-May | 40.17 | 1,363 | 6,955 | 8,318 | 53,675 | 5,522 | 28,727 | | | 27 – May | 40.27 | 2,770 | 10,373 | 13,143 | 66,818 | 7,373 | 36,100 | | | 28 – May | 40.42 | 1,529 | 12,351 | 13,880 | 80,698 | 9,551 | 45,651 | | | 29 – May | 40.60 | 879 | 9,798 | 10,677 | 91,375 | 7,252 | 52,903 | | | 30-May | 41.00 | 547 | 4,828 | 5,375 | 96,750 | 8,330 | 61,233 | | | 31-May | 41.49 | 383 | 6,933 ^b | 7,316 | 104,066 | 9,997 | 71,230 | | | 01-Jun | 41.82 | 361 | 6,680 | 7,041 | 111,107 | 10,306 | | | | 02-Jun | 41.87 | 376 | 4,858 | 5,234 | 116,341 | 12,004 | 93,540 | | | 03-Jun | 41.70 | 350 | 6,517 | 6,867 | 123,208 | 12,203 | 105,743 | | | 04-Jun | 41.70 | 564 | 7,991 | 8,555 | 131,763 | 13,639 | | | | 05-Jun | 42.02 | 392 | 7,120 | 7,512 | 139,275 | 15,032 | | | | 06-Jun | 42.11 | 445 | 7,274 | 7,719 | 146,994 | 13,554 | | | | 07-Jun | 42.06 | 533 | 12,160 | 12,693 | 159,687 | 12,799 | | | | 08-Jun | 42.00 | 540 | 14,025 | 14,565 | 174,252 | 14,173 | | | | 09-Jun | 41.89 | 846 | 8,594 | 9,440 | 183,692 | 13,986 | | | | 10-Jun | 41.92 | 1,058 | 11,068 | 12,126 | 195,818 | 12,750 | A R. P. CONTROL CONTROL OF THE PARTY AND A STATE | | | 11-Jun | 41.80 | 1,065 | 8,598 | 9,663 | 205,481 | 11,879 | | | | 12-Jun | 41.65 | 804 | 7,452 | 8,256 | 213,737 | 10,226 | | | | 13-Jun | 41.73 | 726 | 9,900 | 10,626 | 224,363 | 8,606 | | | | 14-Jun | 41.78 | 631 | 12,917 | 13,548 | 237,911 | 8,201 | 240,588 | | | 15-Jun | 42.03 | 519 | 9,403 | 9,922 | 247,833 | 8,541 | | | | 16-Jun | 42.13 | 445 | 8,444 | 8,889 | 256,722 | 8,253 | | | | 17-Jun | 42.02 | 151 | 9,869 | 10,020 | 266,742 | 8,187 | | | | 18-Jun | 41.94 | 511 | 10,620 | 11,131 | 277,873 | 6,612 | | | | 19-Jun | 42.02 | 264 | 8,081 | 8,345 | 286,218 | 5,647 | | | | 20-Jun | 42.09 | 171 | 7,404 | 7,575 | 293,793 | 5,823 | | | | 21 – Jun | 42.15 | 544 | 6,625 | 7,169 | 300,962 | 5,419 | | | | 22 – Jun | 42.22 | 296 | 8,572 | 8,868 | 309,830 | 5,787 | | | | 23 – Jun | 42.34 | 258 | 5,592 | 5,850 | 315,680 | 6,573 | | | | 24 – Jun | 42.48 | 104 | 3,823 | 3,927 | 319,607 | 6,435 | | | | 25-Jun | 42.46 | 197 | 3,023
2,799 | 2,996 | 322,603 | 5,786 | arabe bocombooked booken oo | | | 26-Jun | 43.13 | 139 | | | | | | | | 27 – Jun | 43.13 | 157 | 3,287
3,083 | 3,426
3,240 | 326,029
329,269 | 4,953 | | | | 28 – Jun | 43.11 | 133 | | 3,240
6,302 | | 4,730 | | | | 29 – Jun | 43.01
42.98 | | 6,169 | 6,302
6,490 | 335,571 | 4,370 | | | | | Carrier and a second second second second second | 518
499 | 5,972
6,862 | 6,490
7.354 | 342,061 | 4,581 | 332,285 | | | 30-Jun | 43.03 | 492 | 6,862 | 7,354 | 349,415 | 4,819 | 337,104 | | -Continued- Table 3. (page 2 of 2). | | | | Estimate | 9 | | Escapo
Object | | |----------|--------------------|--------|----------|---------|------------|------------------|------------| | | Water | North | South | | | | | | Date | Level ^a | Bank | Bank | Daily | Cumulative | Daily |
Cumulative | | 01-Jul | 43.10 | 250 | 7,680 | 7,930 | 357,345 | 4,718 | 341,822 | | 02-Jui | 43.31 | 158 | 5,138 | 5,296 | 362,641 | 5,074 | | | 03-Jul | 43.49 | 149 | 4,827 | 4,976 | 367,617 | 5,078 | • | | 04-Jul | 43.41 | 207 | 7,162 | 7,369 | 374,986 | 5,384 | 357,358 | | 05-Jul | 43.43 | 370 | 10,369 | 10,739 | 385,725 | 4,513 | 361,871 | | 06-Jul | 43.38 | 355 | 9,669 | 10,024 | 395,749 | 4,530 | • | | 07-Jul | 43.42 | 304 | 9,932 | 10,236 | 405,985 | 4,153 | 370,554 | | 08-Jul | 43.43 | 385 | 10,728 | 11,113 | 417,098 | 4,654 | 375,208 | | 09 – Jul | 43.50 | 508 | 10,253 | 10,761 | 427,859 | 4,931 | 380,139 | | 10-Jul | 43.63 | 465 | 9,041 | 9,506 | 437,365 | 5,806 | 385,945 | | 11 – Jul | 43.74 | 290 | 8,163 | 8,453 | 445,818 | 5,179 | 391,124 | | 12-Jul | 43.95 | 367 | 11,586 | 11,953 | 457,771 | 5,374 | 396,498 | | 13-Jul | 44.07 | 245 | 9,084 | 9,329 | 467,100 | 4,884 | 401,382 | | 14-Jul | 44.03 | 395 | 9,875 | 10,270 | 477,370 | 4,842 | 406,224 | | 15-Jul | 43,82 | 125 | 12,158 | 12,283 | 489,653 | 5,493 | 411,717 | | 16-Jul | 43.51 | 220 | 10,677 | 10,897 | 500,550 | 6,053 | 417,770 | | 17 – Jul | 43.20 | 224 | 8,679 | 8,903 | 509,453 | 5,448 | 423,218 | | 18-Jul | 43.14 | 401 | 11,410 | 11,811 | 521,264 | 6,534 | 429,752 | | 19-Jul | 43.30 | 725 | 9,842 | 10,567 | 531,831 | 7,222 | 436,974 | | 20-Jul | 43.47 | 501 | 9,668 | 10,169 | 542,000 | 6,649 | 443,623 | | 21 – Jul | 43.58 | 596 | 8,043 | 8,639 | 550,639 | 5,098 | 448,721 | | 22-Jul | 43.32 | | 8,908 | 8,908 | 559,547 | 4,706 | 453,427 | | 23-Jul | 43.14 | | 8,103 | 8,103 | 567,650 | 3,646 | 457,073 | | 24-Jul | 43.00 | | 6,250 | 6,250 | 573,900 | 3,332 | 460,405 | | 25-Jul | 42.91 | | 5,303 | 5,303 | 579,203 | 3,354 | 463,759 | | 26-Jul | 42.86 | | 5,706 | 5,706 | 584,909 | 2,838 | 466,597 | | 27 – Jul | 42.81 | | 5,699 | 5,699 | 590,608 | 2,010 | 468,607 | | 28-Jul | 42.75 | | 4,926 | 4,926 | 595,534 | 2,168 | 470,775 | | 29-Jul | 42.87 | | 4,150 | 4,150 | 599,684 | 2,101 | 472,876 | | 30-Jul | 42.96 | | 2,519 | 2,519 | 602,203 | 1,899 | | | 31-Jul | 43.13 | | 1,551 | 1,551 | 603,754 | 1,664 | | | 01-Aug | 43.29 | | 2,299 | 2,299 | 606,053 | 1,645 | • | | 02-Aug | 43.37 | | 1,744 | 1,744 | 607,797 | 1,341 | - | | Total | | 33,244 | 574,553 | 607,797 | | | | . a Meters above mean sea level. b Permanent substrate was used from 31 May to the end of project. Table 4. Daily sockeye salmon escapement estimates, Miles Lake sonar, 1990. | | | | Estimate | Э | | Escape
Object | | | | |----------|--------------------|-------|--------------------|--------|------------|------------------|------------|-------|---| | | Water | North | South | | | | | • | Anticip. | | Date | Level ^a | Bank | Bank | Daily | Cumulative | Daily | Cumulative | 0700 | Daily | | 21 – May | 40.79 | | 1,121 ^b | 1,121 | 1,121 | 3,101 | 8,394 | | | | 22-May | 40.92 | 809 | 4,034 | 4,843 | 5,964 | 3,468 | | | | | 23 – May | 40.81 | 1,050 | 6,127 | 7,177 | 13,141 | 4,216 | | 2976 | | | 24-May | 40.63 | 773 | 11,150 | 11,923 | 25,064 | 5,468 | | 3,252 | a a la | | 25 – May | 40,48 | 524 | 13,809 | 14,333 | 39,397 | 5,892 | | 3,967 | | | 26-May | 40.48 | 1,630 | 9,707 | 11,337 | 50,734 | 7,237 | | 3,307 | | | 27-May | 40.58 | 1,378 | 10,682 | 12,060 | 62,794 | 9,078 | • | 2,827 | | | 28-May | 40.77 | 1,325 | 6,109 | 7,434 | 70,228 | 11,220 | | 3,055 | | | 29 – May | 41.00 | 1,250 | 7,926 | 9,176 | 79,404 | 9,508 | | 2,927 | | | 30-May | 41.47 | 1,184 | 8,357 | 9,541 | 88,945 | 9,910 | | 2,595 | | | 31 – May | 41.72 | 1,324 | 9,019 | 10,343 | 99,288 | 10,551 | | 3,112 | | | 01 – Jun | 41.00 | 406 | 9,620 | 10,026 | 109,314 | 10,901 | | 2,779 | | | 02-Jun | 42.03 | 436 | 9,473 | 9,909 | 119,223 | 12,683 | | 2,483 | | | 03-Jun | 42.18 | 383 | 8,193 | 8,576 | 127,799 | 12,343 | | 2,636 | | | 04-Jun | 42.26 | 685 | 6,887 | 7,572 | 135,371 | 13,402 | | 2,529 | | | 05-Jun | 42,45 | 1,086 | 9,087 | 10,173 | 145,544 | 14,683 | | 2,594 | | | 06-Jun | 42.67 | 907 | 9,503 | 10,410 | 155,954 | 13,175 | | 2,381 | | | 07 – Jun | 42.81 | 1,336 | 9,801 | 11,137 | 167,091 | 12,501 | • | 2,823 | | | 08-Jun | 42.98 | 1,076 | 6,561 | 7,637 | 174,728 | 13,934 | | 1,777 | | | 09-Jun | 42.96 | 1,350 | 8,555 | 9,905 | 184,633 | 13,443 | | 2,556 | | | 10-Jun | 42.85 | 916 | 10,744 | 11,660 | 196,293 | 12,241 | | 2,332 | | | 11-Jun | 42.63 | 1,242 | 14,939 | 16,181 | 212,474 | 11,276 | | 4,748 | | | 12-Jun | 42.47 | 1,839 | 22,090 | 23,929 | 236,403 | 9,807 | | 4,936 | | | 13-Jun | 42.44 | 1,533 | 22,915 | 24,448 | 260,851 | 8,482 | | 6,383 | | | 14-Jun | 42.61 | 751 | 13,551 | 14,302 | 275,153 | 8,362 | | 5,131 | | | 15-Jun | 42.66 | 593 | 7,797 | 8,390 | 283,543 | 8,583 | | 2,405 | | | 16-Jun | 42.58 | 1,129 | 8,983 | 10,112 | 293,655 | 8,158 | | 1,975 | | | 17-Jun | 42.52 | 655 | 12,040 | 12,695 | 306,350 | 8,043 | | 2,893 | | | 18-Jun | 42.39 | 695 | 7,357 | 8,052 | 314,402 | 6,643 | | 2,217 | | | 19-Jun | 42.15 | 994 | 8,769 | 9,763 | 324,165 | 5,603 | | 2,158 | | | 20-Jun | 42.03 | 1,232 | 8,083 | 9,315 | 333,480 | 5,601 | | 2,382 | | | 21 – Jun | 41.91 | 971 | 9,321 | 10,292 | 343,772 | 5,279 | | 3,114 | • | | 22-Jun | 41.92 | 602 | 9,555 | 10,157 | 353,929 | 5,713 | | 2,541 | | | 23-Jun | 41.93 | 648 | 9,518 | 10,166 | 364,095 | 6,348 | 312,146 | 2,946 | 10,101 | | 24-Jun | 42.01 | 438 | 8,902 | 9,340 | 373,435 | 6,109 | | 2,676 | ************** | | 25-Jun | 42.02 | 282 | 9,728 | 10,010 | 383,445 | 5,598 | 323,853 | 2,601 | 8,918 | | 26-Jun | 42.09 | 486 | 6,326 | 6,812 | 390,257 | 5,113 | | 2,344 | 8,037 | | 27-Jun | 42.31 | 492 | 8,742 | 9,234 | 399,491 | 4,896 | 333,862 | 2,559 | 8,774 | | 28-Jun | 42.59 | 528 | 6,353 | 6,881 | 406,372 | 4,592 | | 1,991 | | | 29 – Jun | 42.96 | 475 | 4,024 | 4,499 | 410,871 | 4,801 | 343,255 | 1,469 | 5,037 | | 30-Jun | 43.27 | 401 | 3,574 | 3,975 | 414,846 | 5,245 | 348,500 | 700 | 2,400 | -Contiued- Table 4. (page 2 of 2) | | Estimate | | | | | Escape
Object | | | | |----------------------|-----------------------------|---------------|-----------------|---------------------------------------|--------------------|--|---|----------------|--| | Date | Water
Level ^a | North
Bank | South
Bank | Daily | Cumulative | Daily | Cumulative | 0700 | Anticip.
Daily | | | | | | | | | | | | | 01 – Jul | 43.49 | 365 | 3,958 | 4,323 | 419,169 | 4,995 | • | 860 | • | | 02-Jul | 43.78 | 244 | 4,823 | 5,067 | 424,236 | 5,089 | • | 1,231 | | | 03-Jul | 43.76 | 240 | 4,442 | 4,682 | 428,918 | 5,458 | • | 1,494 | - | | 04-Jul | 43.71 | 286 | 5,379 | 5,665 | 434,583 | 5,893 | en elemente en el | 1,319 | na su su su considerante de la constante de la | | 05-Jul | 43.71 | 450 | 7,548 | 7,998 | 442,581 | 5,097 | | 2,319 | | | 06-Jul | 43.74 | 435 | 7,314 | 7,749 | 450,330 | 4,916 | | 2,362 | | | 07 – Jul | 43,85 | 322 | 5,378 | 5,700 | 456,030 | 4,696 | | 1,931 | | | 08-Jul | 43.75 | 312 | 4,880 | 5,192
5,152 | 461,222 | 4,757
4,798 | | 1,142
1,095 | | | 09 – Jul | 43.51 | 307 | 4,846 | 5,153
6,620 | 466,375 | 4,790
5,951 | | 1,093 | en e e e e e e e e e e e e e e e e e e | | 10-Jul | 43,14 | 272 | 6,348 | · · · · · · · · · · · · · · · · · · · | 472,995 | 5,486 | | 1,258 | | | 11Jul | 42.81 | 648 | 4,754 | 5,402
9,338 | 478,397
487,735 | 5,466
5,770 | | 2,319 | | | 12-Jul | 42.58 | 520 | 8,818
10,554 | | 499,167 | 5,770
5,142 | | 2,758 | - | | 13 – Jul | 42.51
42.42 | 878
553 | 7,653 | 11,432
8,206 | 507,373 | 5,142 | | 2,730 | | | 14 – Jul
15 – Jul | 42.42
42.37 | 323 | 7,033
7,986 | 8,309 | 507,373
515,682 | 5,342
5,322 | | 1,822 | na ana ana ana ang Kabupatèn | | 16-Jul | 42.37
42.28 | 323
1,066 | 5,027 | 6,093 | 521,775 | 5,5 <u>22</u>
5,517 | ************************ | 1,856 | | | 10-Jul | 42.20
42.12 | 575 | 5,684 | 6,259 | 528,034 | 5,452 | | 1,611 | | | 17 – Jul
18 – Jul | 42.50 | 585 | 5,141 | 5,726 | 533,760 | 6,513 | | 1,350 | | | 19-Jul | 42.78 | 609 | 5,366 | 5,720
5,975 | 539,735 | 6,948 | • | 1,502 | • | | 20-Jul | 43.06 | 374 | 3,941 | 4,315 | 544,050 | 6,591 | | 891 | | | 21 – Jul | 43.28 | 236 | 2,298 | 2,534 | 546,584 | 5,321 | | 1,101 | ********* | | 22 – Jul | 43.57 | 106 | 2,351 | 2,457 | 549,041 | 4,239 | | 534 | • | | 23 – Jul | 43.62 | 328 | 3,573 | 3,901 | 552,942 | | • | 1,430 | | | 24 – Jul | 43.72 | 300 | 2,583 | 2,883 | 555,825 | 3,351 | | 558 | • | | 25-Jul | 43.83 | 293 | 1,757 | 2,050 | 557,875 | e alala e e e e e e alalala año al ala alalala ala | | 743 | | | 26 – Jul | 43.75 | 132 | 2,125 | 2,257 | 560,132 | | | 694 | | | 27 – Jul | 43.25 | 384 | 2,501 | 2,885 | 563,017 | 2,319 | | 680 | - | | 28 – Jul | 42.90 | | 1,934 | 1,934 | 564,951 | 2,445 | | 448 | | | 29 – Jul | 43.15 | | 2,808 | 2,808 | 567,759 | • | | 725 | • | | 30-Jul | 43.46 | | 2,462 | 2,462 | 570,221 | 1,840 | | 469 | | | 31-Jul | 43.51 | | 2,550 | 2,550 | 572,771 | ากระบบของการกระบบที่เกิดเกาะเรียก | | 557 | กระบบรายการการการที่สาราชการ | | 01 – Aug | 43.51 | | 3,839 | 3,839 | 576,610 | | | 570 | | | 02-Aug | 43.51 | | 5,249 | 5,249 | 581,859 | | | 1,531 | | | Total | | 46,957 | 534,902 | 581,859 | | | | _ | | a Feet above mean sea level. b Permanent substrate used from 21 May to project end. Table 5. Daily sockeye salmon escapement estimates, Miles Lake sonar, 1991. | · · · · · · · · · · · · · · · · · · · | | | Estimate | | Escapement | | | | | | | |---------------------------------------|--------------------|-------|--------------------|---------|------------|--------|---|---------|--------|--|--| | | Water | North | South | | | Obje | • | Anticip | ated | | | | Date | Level ^a | Bank | Bank | Daily (| Cumulative | | Cumulative | 0700 | Daily | | | | | | | | | | | | | | | | | 21-May | 39.42 |
 1,087 | 1,087 | 1,087 | 2,458 | 10,263 | | | | | | 22-May | 39.52 | | 1,717 | 1,717 | 2,804 | 2,938 | 13,201 | | | | | | 23-May | 39.70 | 310 | 2,851 | 3,161 | 5,965 | 3,868 | 17,069 | 446 | 1,529 | | | | 24-May | 39.96 | 184 | 2,281 | 2,465 | 8,430 | 5,344 | 22,413 | 629 | 2,157 | | | | 25-May | 40.17 | 230 | 2,816 | 3,046 | 11,476 | 6,184 | 28,597 | 665 | 2,280 | | | | 26-May | 40.33 | 236 | 3,038 | 3,274 | 14,750 | 7,610 | 36,207 | 923 | 3,165 | | | | 27-May | 40.41 | 223 | 3,670 | 3,893 | 18,643 | 9,246 | 45,453 | - 1,198 | 4,107 | | | | 28-May | 40.51 | 109 | 3,280 | 3,389 | 22,032 | 10,509 | 55,962 | 814 | 2,791 | | | | 29-May | 40.55 | 372 | 3,561 | 3,933 | 25,965 | 8,884 | 64,846 | 1,032 | 3,538 | | | | 30-May | 40.56 | 481 | 3,936 | 4,417 | 30,382 | 9,647 | 74,493 | 716 | 2,455 | | | | 31-May | 40.58 | 541 | 8,821 | 9,362 | 39,744 | 10,304 | 84,797 | 1,736 | 5,952 | | | | 01 – Jun | 40.51 | 950 | 15,883 | 16,833 | 56,577 | 10,414 | 95,211 | 4,310 | 14,777 | | | | 02-Jun | 40.42 | 757 | 20,394 | 21,151 | 77,728 | 11,750 | 106,961 | 5,135 | 17,606 | | | | 03-Jun | 40.32 | 586 | 17,222 | 17,808 | 95,536 | 11,169 | 118,130 | 4,201 | 14,403 | | | | 04-Jun | 40.31 | 961 | 13,596 | 14,557 | 110,093 | 12,128 | 130,258 | 5,080 | 17,417 | | | | 05-Jun | 40.38 | 527 | 18,146 | 18,673 | 128,766 | 13,720 | 143,978 | 4,795 | 16,440 | | | | 06-Jun | 40.42 | 786 | 10,902 | 11,688 | 140,454 | 13,096 | 157,074 | 3,489 | 11,962 | | | | 07-Jun | 40.47 | 122 | 8,318 | 8,440 | 148,894 | 12,563 | 169,637 | 1,864 | 6,391 | | | | 08-Jun | 40.55 | 162 | 9,309 | 9,471 | 158,365 | 13,484 | 183,121 | 2,582 | 8,853 | | | | 09-Jun | 40.60 | 219 | 11,446 | 11,665 | 170,030 | 12,885 | 196,006 | 2,799 | 9,597 | | | | 10-Jun | 40.58 | 227 | 8,338 | 8,565 | 178,595 | 11,739 | 207,745 | 3,256 | 11,163 | | | | 11-Jun | 40.71 | 120 | 7,984 ^b | 8,104 | 186,699 | 10,923 | 218,668 | 1,207 | 4,138 | | | | 12-Jun | 40.87 | 77 | 12,611 | 12,688 | 199,387 | 10,100 | 228,768 | 3,513 | 12,045 | | | | 13-Jun | 41.06 | 195 | 8,871 | 9,066 | 208,453 | 9,218 | 237,986 | 3,764 | 12,905 | | | | 14-Jun | 41.31 | 158 | 9,078 | 9,236 | 217,689 | 8,558 | 246,544 | 2,428 | 8,325 | | | | 15-Jun | 41.53 | 132 | 14,835 | 14,967 | 232,656 | 8,388 | 254,932 | 3,870 | 13,269 | | | | 16-Jun | 41.77 | 126 | 14,241 | 14,367 | 247,023 | 8,096 | 263,028 | 4,248 | 14,565 | | | | 17-Jun | 42.00 | 34 | 10,095 | 10,129 | 257,152 | 8,057 | 271,085 | 2,406 | 8,249 | | | | 18-Jun | 42.10 | 24 | 11,027 | 11,051 | 268,203 | 6,404 | 277,489 | 3,058 | 10,485 | | | | 19-Jun | 42.04 | 192 | 12,729 | 12,921 | 281,124 | 5,685 | 283,174 | 2,947 | 10,104 | | | | 20-Jun | 42.05 | 338 | 13,808 | 14,146 | 295,270 | 5,828 | 289,002 | 4,701 | 16,118 | | | | 21 – Jun | 42.53 | 144 | 8,606 | 8,750 | 304,020 | 5,534 | 294,536 | 2,590 | 8,880 | | | | 22-Jun | 43.14 | 142 | 7,688 | 7,830 | 311,850 | 5,936 | 300,472 | 2,241 | 7,683 | | | | 23-Jun | 43.69 | 193 | 6,165 | 6,358 | 318,208 | 6,660 | 307,132 | 1,943 | 6,662 | | | | 24-Jun | 44.02 | 301 | 5,662 | 5,963 | 324,171 | 6,424 | 313,556 | 1,576 | 5,403 | | | | 25-Jun | 44.03 | 366 | 7,294 | 7,660 | 331,831 | 5,881 | 319,437 | 2,383 | 8,170 | | | | 26-Jun | 43.83 | 187 | 9,313 | 9,500 | 341,331 | 5,376 | 324,813 | 2,741 | 9,398 | | | | 27 – Jun | 43.64 | 61 | 10,294 | 10,355 | 351,686 | 5,403 | 330,216 | 2,336 | 8,009 | | | | 28 – Jun | 43.57 | 163 | 10,647 | 10,810 | 362,496 | 4,972 | | 3,644 | 12,494 | | | | 29 - Jun | 43.66 | 90 | 10,349 | 10,439 | 372,935 | 5,028 | 340,216 | 2,793 | 9,576 | | | | 30-Jun | 43.78 | 95 | 9,018 | 9,113 | 382,048 | 5,433 | ระบางกระบางกระบางการเกรายให้เกรายการทำการเกรา | 2,654 | 9,099 | | | | OO TOUIT | | 30 | 9,010 | Continu | UUZ,U40 | ত,পতত | U40,U43 | ۷,004 | ಶ,೮ಶಶ | | | -Continued- Table 5. (page 2 of 2). | | | | Estimate | | | Esca | apement | | | |----------|---------|-------------|--------------------|--------------------|------------|----------|---|----------|--------| | | Water | North | South | | | | ctive | Anticipa | ted | | Date | Level a | Bank | Bank | Daily C | Cumulative | | Cumulative | | Daily | | | | | | | | <u> </u> | | | | | 01 – Jul | 43.87 | 120 | 7,183 | 7,303 | 389,351 | 5,132 | 350,781 | 2,807 | 9,624 | | 02-Jul | 43.90 | 139 | 4,970 | 5,109 | 394,460 | 5,239 | 356,020 | 1,583 | 5,427 | | 03-Jul | 43.77 | 129 | 6,206 | 6,335 | 400,795 | 5,705 | 361,725 | 1,677 | 5,750 | | 04-Jul | 43.76 | 156 | 6,524 | 6,680 | 407,475 | 6,157 | 367,882 | 1,610 | 5,520 | | 05-Jul | 43.53 | 135 | 5,710 | 5,845 | 413,320 | 5,583 | 373,465 | 1,837 | 6,298 | | 06-Jul | 43.24 | 78 ° | 6,135 | 6,213 | 419,533 | 5,469 | 378,934 | 2,023 | 6,936 | | 07-Jul | 43.07 | 178 | 6,044 | 6,222 | 425,755 | 5,051 | 383,985 | 1,121 | 3,843 | | 08-Jul | 43.08 | 203 | 6,866 | 7,069 | 432,824 | 5,014 | 388,999 | 1,703 | 5,839 | | 09-Jul | 43.22 | 185 | 6,268 | 6,453 | 439,277 | 5,066 | 394,065 | 1,796 | 6,158 | | 10-Jul | 43,49 | 132 | 4,478 | 4,610 | 443,887 | 6,240 | ·, · · · · · · · · · · · · · · · · · · | 1,195 | 4,097 | | 11-Jul | 43.22 | 128 | 4,349 | 4,477 | 448,364 | 5,974 | 406,279 | 1,192 | 4,087 | | 12-Jul | 43.04 | 138 | 4,680 | 4,818 | 453,182 | 6,733 | 413,012 | 1,376 | 4,718 | | 13-Jul | 42.94 | 114 | 3,855 | 3,969 | 457,151 | 6,281 | 419,293 | 1,187 | 4,070 | | 14Jul | 42.92 | 215 | 7,283 | 7,498 | 464,649 | 6,202 | 425,495 | 1,394 | 4,779 | | 15-Jul | 42.85 | 216 | 7,334 | 7,550 | 472,199 | 6,216 | 431,711 | 1,825 | 6,257 | | 16-Jul | 42.82 | 277 | 9,394 | 9,671 | 481,870 | 6,040 | - | 3,686 | 12,638 | | 17-Jul | 42.96 | 277 | 9,391 | 9,668 | 491,538 | 5,875 | - | 2,894 | 9,922 | | 18-Jul | 42.86 | 210 | 7,130 | 7,340 | 498,878 | 7,103 | 450,729 | 2,439 | 8,362 | | 19-Jul | 42.50 | 215 | 7,298 | 7,513 | 506,391 | 7,763 | 458,492 | 1,706 | 5,849 | | 20-Jul | 42.17 | 306 | 10,375 | 10,681 | 517,072 | 7,316 | 465,808 | 3,143 | 10,776 | | 21 – Jul | 42.11 | 294 | 9,974 | 10,268 | 527,340 | 6,093 | • | 3,370 | 11,554 | | 22-Jul | 42.27 | 278 | 9,424 | 9,702 | 537,042 | 5,068 | • | 2,975 | 10,200 | | 23-Jul | 42.41 | 258 | 8,759 | 9,017 | 546,059 | 3,985 | • | 2,346 | 8,043 | | 24-Jul | 42.70 | 122 | 4,123 | 4,245 | 550,304 | 3,829 | antario de activación de la contractiva | 992 | 3,401 | | 25-Jul | 42.87 | 88 | 2,978 | 3,066 | 553,370 | 3,823 | 488,606 | 678 | 2,325 | | 26-Jul | 42.97 | 127 | 4,295 | 4,422 | 557,792 | 3,476 | 492,082 | 894 | 3,065 | | 27 – Jul | 42.95 | 111 | 3,773 | 3,884 | 561,676 | 2,917 | 494,999 | 893 | 3,062 | | 28 – Jul | 42.90 | 137 | 4,656 | 4,793 | 566,469 | 2,896 | • | - | 3,614 | | 29 – Jul | 42.82 | 153 | 5,201 | 5,354 | 571,823 | 2,385 | 500,280 | 975 | 3,343 | | 30-Jul | 42.77 | 135 | 4,576 | 4,711 | 576,534 | 1,967 | | 1,015 | 3,480 | | 31 – Jul | 42.65 | 83 | 2,818 ^c | ¹ 2,901 | 579,435 | 1,610 | 503,857 | 918 | 3,147 | | Total | | 16,458 | 562,977 | 579,435 | | | <u> </u> | | | | | | .0, .00 | 305,0.7 | 3.3, .00 | | | | | | a Meters above mean sea level. b Permanent substrate was used from 11 June to end of project. c North bank pulled 12:00 noon. All counts after 12:00 noon July 6 are interpelated. North bar counts are derived from the average percent of North versus south bank counts of 2.93 perce d South bank pulled 12:00 noon. Numbers were expanded for a daily total. Figure 1. Commercial and subsistence fishing areas, Copper River drainage. Figure 2. North and south bank sonar sites, Miles Lake area, Copper River. # **1988 MILES** LAKE SONAR COUNTS DAILY Figure 3. Anticipated and actual daily and cumulative salmon escapement estimates, Miles Lake sonar, 1988. # **1989 MILES** LAKE SONAR COUNT SALMON 8 ANTICIPATED ACTUAL 700 Figure 4. Anticipated and actual daily and cumulative salmon escapement estimates, Miles Lake sonar, 1989. ## 1990 MILES LAKE SONAR COUNT DAILY #### **CUMULATIVE** 700 ANTICIPATED 600 ACTUAL 500 Thousands SALMON 400 300 200 100 0 05 June 10 June 15 June 20 June 30 June 05 July 15 July 25 May 31 May 25 June 10 July 20 July 25 July 31 July DATE Figure 5. Anticipated and actual daily and cumulative salmon escapement estimates, Miles Lake sonar, 1990. ## 1991 MILES LAKE SONAR COUNT DAILY Figure 6. Anticipated and actual daily and cumulative salmon escapement estimates, Miles Lake sonar, 1991. Figure 7. Mean sector count percentages for south and north bank counting units through time, Miles Lake sonar project, 1988. Figure 8. Mean sector count percentages for south and north bank counting units through time, Miles Lake sonar project, 1989. Figure 9. Mean sector count percentages for south and north bank counting units through time, Miles Lake sonar project, 1990. Figure 10. Mean sector count percentages for south and north bank counting units through time. Note the 12 sector counter operated the first 26 days, Miles Lake sonar project, 1991. #### **APPENDICES** Appendix 1. Daily salmon escapement estimates, Miles Lake sonar, Copper River, 1978-1991. | | - | | | | s Lake sona | | | | | | | | | | Average
Daily | | | |--------------------------------|-------------------------|-----------------|------------------|------------------|------------------|-------------------------------|------------------------|----------------------------|------------------|--------------------------|-----------------------------|------------------------------|-------------------------------|---------------------|------------------|-------------------------|----------------------| | Date | 1978_ | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | Count | S.D. | C.V. | | 17-May | | | | 5,372 | | | | | | | | 732 | | | 2,035 | 2,379 | 116.91 | | 18 – May
19 – May | | 381
487 | 218
167 | 9,665
11,409 | | | 725 | | | | 313 | 3,660
6,588 | | | 3,481
3,282 | 3,825
4,279 | 109.89
130.39 | | 20-May | | 847 | 221 | 10,733 | | | 1,924 | | | | 877 | 6,935 | 4 404 | | 3,101 | 3,803 | 122.67 | |
21 – May
22 – May | | 1,199
1,916 | 88
391 | 9,729
7,558 | | | 1,986
5,124 | | | 36
482 | 1,140
2,256 | 4,634
4,030 | 1,121
4,843 | 1,087
1,717 | 2,358
3,146 | 2,927
2,263 | 124.15
71.91 | | 23 – May
24 – May | | 2,901
3,402 | 594
494 | 6,214
12,985 | 90 | 3,310
8,620 | 5,042
4,488 | | | 1,732
2,040 | 5,078
11,033 | 6,472
7, 44 8 | 7,177
11,923 | 3,161
2,465 | 4,168
5,908 | 2,054
4,478 | 49.29
75.79 | | 25~May | | 2,397 | 713 | 12,816 | 493 | 11,587 | 3,120 | | 534 | 4,263 | 9,979 | 4,656 | 14,333 | 9,046 | 5,662 | 4,870 | 86.01 | | 26 – May
27 – May | 502
837 | 4,927
6,821 | 1,057
2,115 | 6,383
2,842 | 1,023
12,091 | 10,575
8,661 | 4,845
5,836 | | 1,694
2,092 | 7,115
12, 17 6 | 8,946
13,247 | 8,318
13,143 | 11,337
12,0 6 0 | 3,893
3,389 | 5,417
7,332 | 3,572
4,591 | 65.94
62.63 | | 28-May | 1,047 | 2,768 | 1,693 | 2,560 | 47,303 | 8,456 | 4,978 | 1,031 | 3,384 | 16,392 | 14,201 | 13,680 | 7,434 | 3,933 | 9,219 | 11,676 | 126.66 | | 29 – May
30 – May | 661
3,241 | 3,905
7,482 | 1,080
1,903 | 2,160
11,822 | 19,671
8,781 | 6,380
8,296 | 7,126
4,951 | 417
599 | 2,393
3,173 | 14 485
18 196 | 10,022
6,806 | 10,677
5,375 | 9,176
9,541 | 4,417
9,362 | 8,612
7,109 | 5,488
4,377 | 83.01
61.56 | | 31-May
01-Jun | 2,549
2,616 | 8,655
4,078 | 3,620
5,257 | 21,125
18,415 | 11,389
15,385 | 17,123
18,428 | 4,278
8,536 | 1,756
3,462 | 4,150
7,001 | 18,540
16,395 | 7,586
5,205 | 7,318
7,041 | 10,343
10,026 | 16,833
17,808 | 9,662
9,975 | 6,214
5,797 | 64.31
58.11 | | 02-Jun | 2,811 | 3,465 | 7,061 | 23,771 | 17,213 | 14,414 | 8,483 | 6,726 | 20,638 | 14,385 | 3,558 | 5,234 | 9,909 | 14,557 | 10,873 | 6,458 | 59,39 | | 03-Jun
04-Jun | 1,837
3,256 | 3,536
2,778 | 7,437
8,996 | 16,716
9,755 | 13,383
12,355 | 13,137
15,357 | 9,730
12,496 | 10,691
24,272 | 20,237
26,626 | 17,666
14,632 | 4,626
7,877 | 6,867
8,555 | 8,576
7,572 | 18,673
11,688 | 10,937
11,873 | 5,664
6,585 | 51.79
55.46 | | 05-Jun | 2,970 | 4,352 | 9,746 | 10,478 | 14,806 | 19,110 | 16,726 | 30,507 | 27,934 | 10,962 | 6,755 | 7,512 | 10,173 | 8,440 | 12,891 | 7,920 | 61.44 | | 06-Jun
07-Jun | 3,318
3,808 | 6,453
7,031 | 5,407
2,093 | 11,975
13,585 | 15,585
12,506 | 14,0 6 9
19,309 | 18,097
18,515 | 32,953
27,256 | 14,527
9,858 | 4,322
5,755 | 8,895
9,0 9 6 | 7,719
12,693 | 10,410
11,137 | 11,665
8,565 | 11,814
11,501 | 7, 2 62
6,457 | 61.47
56.15 | | 08-Jun
09-Jun | 3,275
2,252 | 11,078
7,985 | 1,349
3,543 | 14,412
15,694 | 8,430
7,017 | 16,094
11,415 | 26,619
20,476 | 30,925
29,702 | 24,938
28,242 | 6,366
7,922 | 11,322
14,641 | 14,5 6 5
9,440 | 7,637
9,905 | 9,471
11,665 | 13,320
12,850 | 8,472
7,996 | 63.80
62.22 | | 10-Jun | 3,475 | 5,205 | 7,301 | 12,856 | 7,599 | 8,009 | 19,275 | 12,010 | 29,952 | 11,553 | 15,216 | 12,128 | 11,660 | 8,565 | 11,772 | 6,403 | 54:39 | | 11-Jun
12-Jun | 2,490
2,082 | 4,426
2,227 | 12,032
11,584 | 7,877
4,844 | 7,879
8,587 | 9,563
13,292 | 17,237
21,706 | 11,826
8,231 | 25,418
16,494 | 11,194
6,506 | 16,255
14,959 | 9,663
8,256 | 16,181
23,929 | 12,688
9,066 | 11,766
10,840 | 5,585
6,393 | 47.46
58.98 | | 13-Jun | 2,419 | 3,903 | 7,600 | 3,556 | 9,932 | 13,444 | 12,072 | 6,829 | 11,453 | 4,053 | 10,751 | 10,626 | 24,448 | 9,236 | 9,309 | 5,406 | 58.08 | | 14-Jun
15-Jun | 2,835
2,913 | 2,563
3,351 | 5,661
7,308 | 5,228
7,071 | 12,551
12,677 | 13,831
15,915 | 5,981
10,291 | 6,800
8,825 | 11,393
8,747 | 8,053
5,485 | 9,382
9,810 | 13,548
9,922 | 14,302
8,390 | 14,967
14,967 | 9,078
8,964 | 4,190
3,671 | 46.16
40.66 | | 16-Jun | 2,762 | 3,473 | 5,655 | 6,885 | 13,595 | 7,938 | 13,930
19,809 | 9,347 | 10,099 | 5,516 | 6,484 | 8,889
10,020 | 10,112 | 14,367 | 8,505 | 3,564
4,239 | 41.91 | | 17-Jun
18-Jun | 2,779
2, 26 1 | 4,640
3,911 | 7,189
6,741 | 6,467
4,565 | 12,030
6,544 | 5,671
5,689 | 12,850 | 8,270
3,738 | 8,772
9,050 | 5,406
4,815 | 4,910
6,469 | 11,131 | 12,695
8,052 | 10,129
11,051 | 8,342
6,919 | 3,030 | 50.81
43.79 | | 19-Jun
20-Jun | 3,035
3,035 | 3,413
1,954 | 2,391
3,597 | 2,985
2,691 | 4,369
3,352 | 6,461
7,382 | 7,474
9,258 | 3,251
2,423 | 7,910
7,240 | 3,983
3,935 | 7,855
7,952 | 8,345
7,575 | 9,763
9,315 | 12,921
14,146 | 6,011
6,004 | 3,035
3,406 | 50.48
56.73 | | 21 - Jun | 2,515 | 2,223 | 4,142 | 3,446 | 3,346 | 8,124 | 7,159 | 2,061 | 6,741 | 3,924 | 5,770 | 7,169 | 10,292 | 8,750 | 5,404 | 2,565 | 47.46 | | 22-Jun
23-Jun | 2,068
2,841 | 2,585
2,865 | 3,954
3,896 | 3,997
4,363 | 4,467
7,031 | 8,005
7,528 | 5,522
5,913 | 2,763
3,369 | 9,026
8,010 | 6,379
10,111 | 6,985
7,699 | 8,868
5,850 | 10,157
10,166 | 7,830
6,358 | 5,900
6,143 | 2,555
2,365 | 43.30
36.50 | | 24-Jun | 2,616 | 1,877 | 5,217 | 4,651 | 6,329 | 6,009 | 6,741 | 2,950 | 6,968 | 15,706 | 5,582 | 3,927 | 9,340 | 5,963 | 5,991 | 3,291 | 54,93 | | 25-Jun
26-Jun | 2,130
1,771 | 9,013
1,973 | 5,104
3,595 | 3,396
2,412 | 4,905
4,416 | 5,226
5,638 | 6,503
4,385 | 1,585
2,381 | 5,731
5,410 | 16,517
12,500 | 5,697
6,378 | 2,996
3,426 | 10,010
6,812 | 7,660
9,500 | 5 741
5 043 | 3,692
2,934 | 64:30
58,19 | | 27-Jun | 2,178 | 1,315 | 3,421 | 2,507 | 2,732 | 4,738 | 7,224 | 3,035 | 5,153 | 7,010 | 6,559 | 3,240 | 9,234 | 10,355 | 4,907 | 2,677 | 54.56 | | 28-Jun
29-Jun | 1,103
1,604 | 1,697
1,450 | 4,324
3,845 | 2,949
3,421 | 2,174
2,130 | 4,771
4,304 | 6,728
4,453 | 2,264
2,147 | 5,022
3,576 | 5,644
6,836 | 6,259
8,220 | 6,302
6,490 | 6,881
4,499 | 10,810
10,439 | 4,781
4,530 | 2,530
2,533 | 52,91
55,92 | | 30÷Jun
01 – Jul | 1,632
1,587 | 1,899
2,651 | 3,465
3,559 | 2,378
2,723 | 2,313
2,190 | 6,146
6,106 | 5,449
8,226 | 2,139
2,620 | 3,771
3,584 | 4,638
2,012 | 6,497
5,602 | 7,354
7,930 | 3,975
4,323 | 9,113
7,303 | 4,412
4,315 | 2,261
2,215 | 51.24
51.3323 | | 02-Jul | 2,533 | 2,524 | 3,365 | 2,606 | 4,420 | 6,113 | 7,554 | 2,608 | 3,152 | 3,406 | 4,680 | 5,296 | 5,067 | 5,109 | 4,174 | 1,489 | 35.67889 | | 03-Jul
04-Jul | 2,527
2,980 | 2,859
3,806 | 4,104
2,934 | 2,548
4,094 | 5,751
5,245 | 6,026
6,943 | 8,581
6,515 | 1,619
3,536 | 2,311
1,805 | 4,096
7,100 | 4,222
3,532 | 4,976
7,369 | 4,682
5,665 | 6,335
6,680 | 4,346
4,872 | 1,825
1,779 | 41.99069
36.50896 | | 05~Jul | 2,269 | 3,008 | 2,879 | 4,256 | 4,995 | 5,347 | 6,662 | 3,254 | 1,499 | 4,351 | 3,304 | 10,739 | 7,998 | 5,845 | 4,743
4,586 | 2,386
2,255 | 50.29574
49,16885 | | 06-Jul
07-Jul | 1,623
1,152 | 1,996
892 | 3,025
3,291 | 3,476
3,863 | 8,300
6,171 | 3,973
4,209 | 5,449
4,040 | 4, 664
3,627 | 2,809
2,991 | 3,393
5,617 | 3,510
4,324 | 10,024
10,236 | 7,749
5,700 | 6,213
6,221 | 4,452 | 2,248 | 50.4978 | | 08-Jul
09-Jul | 831
947 | 2,091
3,190 | 2,995
2,817 | 3,774
3,449 | 3,990
2,210 | 4,080
3,353 | 3,906
3,210 | 3,693
6,827 | 2,860
3,077 | 6,616
6,352 | 8,499
5,167 | 11,113
10,761 | 5,192
5,153 | 7,067
6,452 | 4,779
4,497 | 2,620
2,409 | 54.81744
53.56511 | | 10-Jul | 1,252 | 4,209 | 3,842 | 2,942 | 2,070 | 3,644 | 2,927 | 10,607 | 5,435 | 8,585 | 6,347 | 9,506 | 6,620 | 4,609 | 5,171 | 2,731 | 52,81835 | | 11 – Jul
12 – Jul | 841
341 | 3,684
3,262 | 5,763
4,788 | 2,271
3,468 | 1,980
3,420 | 4,454
4,541 | 3,608
4,280 | 5,457
6,329 | 5,115
5,042 | 5,322
5,757 | 7,620
7,881 | 8,453
11,953 | 5,402
9,338 | 4,477
4,817 | 4,803
5,373 | 1,996
2,755 | 43,354
51,27248 | | 13-Jul | 167 | 3,144 | 1,725 | 2,265 | 4,032 | 4,543 | 4,582 | 5,252 | 3,696 | 6,583 | 7,087 | 9,329 | 11,432 | 3,968 | 4,843 | 2,876 | 59,37856 | | 14-Jul
15-Jul | 290
275 | 4,124
3,535 | 1,679
1,748 | 2,596
3,691 | 4,339
4,714 | 5,619
6,496 | 6,573
5,521 | 6,113
5,024 | 3,530
4,699 | 6,439
5,722 | 7,012
6,924 | 10,270
12,283 | 8,206
8,309 | 7,497
7,549 | 5,320
5,463 | 2,615
2,818 | 49.14254
51.5833 | | 16-Jul
17-Jul | 538
304 | 5,175 | 2,515 | 2,580
780 | 3,561 | 6,970 | 6,755 | 5,339 | 2,227 | 6,259 | 5,457 | 10,897 | 6,093 | 9,670 | 5,288 | 2,767 | 52.32955 | | 17-Jul | 284 | 3,555
3,760 | 3,419
5,678 | 6, 63 3 | 2,925
3,413 | 6,327
4,326 | 4,955
4,736 | 5,960
5,110 | 4,108
4,993 | 4,467
4,620 | 4,877
3,857 | 6,903
11,611 | 6,259
5,726 | 9,667
7,339 | 4,750
5,320 | 2,539
2,580 | 53.44963
48.49606 | | 19 [°] –Jul
20÷Jul | 321
238 | 3,344
2,716 | 5,613
5,060 | 20,975
20,511 | 4,296
3,920 | 3,703
3,968 | 3,140
3,389 | 4,560
6,176 | 6,066
5,997 | 4,127
2,634 | 4,583
4,483 | 10,567
10,169 | 5,975
4,315 | 7,512
10.679 | 6,056
6,234 | | 77.79871
77.24245 | | 21 Jul | 61 | 2,583 | 3,826 | 15,741 | 4,049 | 4,463 | 3,204 | 4,128 | 4,746 | 2,441 | 3,964 | 8,639 | 2,534 | 10,267 | 5,048 | 3,842 | 76.12111 | | 22-Jul
23-Jul | 18
15 | 2,012
1,915 | 3,173
2,143 | 6,566
5,787 | 3,871
3,099 | 4,881
3,603 | 3,780
3,205 | 3,158
2,670 | 3,408
2,909 | 1,273
1,002 | 2,797
3,429 | 6,908
6,103 | 2,457
3,901 | 9,700
9,016 | 4,000
3,643 | | 65.74349
65.81617 | | 24Jul | 40 | 2,162 | 1,353 | 5,063 | 3,061 | 3,903 | 2,198 | 2,162
 2,633 | 625 | 3,900 | 6,250 | 2,883 | 4,244 | 2,893 | 1,628 | 56.28538 | | 25-Jul
26-Jul | 13 | 771 | 1,623
1,258 | 3,391
2,493 | 3,874
2,596 | 4,535
3,839 | 1, 937
1,687 | 2,449
1,974 | 2,292
1,799 | 2,014
368 | 4,028
4,142 | 5,303
5,706 | 2,050
2,257 | 3,065
4,421 | 2,656
2,562 | | 50.85127
58.27915 | | 27-Jul | | 316 | 1,198 | 2,451 | 2,247 | 3,687 | 1,391 | 2,191 | 1,626 | 626 | 3,920 | 5,699 | 2,885 | 3,884 | 2,471 | 1,463 | 59.21791 | | 28-Jul
29-Jul | | 387
365 | 698
400 | 2,785
3,686 | 2,375
1,426 | 5,234
4,138 | 1,004
891 | 2,839
2,813 | 1,797
1,563 | 2,494
2,341 | 3,452
3,476 | 4,926
4,150 | 1,934
2,808 | 4,793
5,354 | 2,671
2,570 | | 56.99727
58.76303 | | 30-Jul
31-Jul | | 491
703 | 470
353 | 3,614
3,802 | 963
1,176 | 3,512
1,835 | 938
1,093 | 2,790
1,848 | 1,489
1,259 | 2,075
2,226 | 2,423
1,920 | 2,519
1,551 | 2,462
2,550 | 4,710
2,901 | 2,204
1,786 | | 57.31857
50.37073 | | 01-Aug | | 758 | 825 | 3,396 | 511 | 1,912 | 1,047 | 1,070 | 1,172 | 2,726 | 1,438 | 2,299 | 3,839 | aran ing Pro | 1,749 | 1,045 | 59.76154 | | 02-Aug
03-Aug | | 379
227 | 1,034
764 | 2,304
1,913 | 942
494 | 2,211
2,088 | 1,088
1,213 | 703 | 1,045
770 | 1,299
1,702 | 1,098 | 1,744 | 5,249 | | 1,591
1,146 | | 77.31648
56.41681 | | 04-Aug | 666000000000000 | 286 | 708 | 1,297 | 581 | 2,897 | 1,118 | | 814 | 1,499 | ayaanaanaassa sa | | | unterpresentation | 1,150 | 756 | 65.75834 | | 05-Aug
06-Aug | | 173
103 | 758
877 | 1,181
1,170 | 122 | | 1,009
533 | | 435
416 | 51.6 | 816916999 | | | | 599
620 | 973
370 | 62.2471
59.71947 | | 07-Aug | | 76 | 615 | • | | | • | | 192 | | | | | | 294 | 232 | 76.69925 | | guA-80
guA-eo | | | 166
239 | | | | | | 33
47 | | | | | _ | 100
143 | 67
96 | 66.83417
67.13287 | | | | | | | | | | | | | | | | | 173 | | | Total 107,011 237,173 276,538 535,263 467,306 545,724 536,806 436,313 508,600 483,478 488,396 607,797 581,659 579,412 420,220 183,068 Apendix 2. Cumulative daily salmon escapement estimates, Miles Lake sonar, Copper River, 1978-1991. | Data | 4070 | 40.70 | , | | 4000 | 4000 | *** | 4 | 4 | | 4 | , | , | | Average
Daily | | ~ | |----------------------|--------------------|---------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|---------------------|--------------------|-------------------------------|------------------| | Date | 1978 | 1979 | 1980 | 1981_ | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | Count | S.D. | C.V. | | 7∼May
8∼May | | 381 | 218 | 5,372
15,037 | | | | | | | | 732
4,392 | | | 3,052
5,007 | 2,320
6,027 | 76.02
120.38 | | 9 - May | | 868 | 385 | 26,446 | annanan aras sasa. | | 725 | | | | 313 | 10,980 | | | 6,620 | 9,649 | 145.76 | | O-May | | 1,715
2,914 | 606
694 | 37,179
46,908 | 3000333555 | | 2,649
4,635 | | | 167
203 | 1,190
2,630 | 17,915
22,749 | 1,121 | 1,087 | 8,774
9,216 | 12,962
14,882 | 147.72
161.49 | | 22-May | | 4,830 | 1,085 | 54,466 | | | 9,759 | | | 685 | 4,886 | 26,779 | 5,964 | 2,804 | 12,362 | 16,653 | 134.71 | | 23 – May
24 – May | | 7,731
11,133 | 1,679
2,173 | 60,680
73,665 | 90 | 3,310
11,930 | 14,801
19,287 | | | 2,417
4,457 | 9,964
20,997 | 33,251
40,699 | 13,141
25,064 | 5,965
8,430 | 15,294
19,811 | 17,478
20,379 | 114.28
102.87 | | 5-May | | 13,530 | 2,886 | 86,481 | 583 | 23,517 | 22,407 | | 534 | 8,720 | 30,975 | 45,357 | 39,397 | 11,476 | 23,822 | 23,617 | 99.14 | | 26 – May
27 – May | 502
1,339 | 18,457
25,278 | 3,943
6,058 | 92,864
95,706 | 1,606
13,697 | 34,092
42,753 | 27,052
32,886 | | 2,228
4,320 | 15,835
28,011 | 39,922
53,169 | 53,675
66,818 | 50,734
62,794 | 18,643
22,032 | 27,658
34,989 | 25,697
27,093 | 92.91
77.43 | | 28 - May | 2,386 | 28,046 | 7,751 | 98,266 | 61,000 | 51,209 | 37,866 | 1,031 | 7,704 | 44,403 | 67,370 | 80,698 | 70,228 | 25,9 6 5 | 41,708 | 30,024 | 71.98 | | 29 – May
30 – May | 3,047
6,288 | 31,951
39,433 | 8,831
10,734 | 100,426
112,248 | 80,671
89,452 | 57,589
65,885 | 44,992
49,943 | 1,448
2,047 | 10,097
13,270 | 58,886
77,084 | 77,392
64,198 | 91,375
96,750 | 79,404
88,945 | 30,382
39,744 | 48,321
55,430 | 33,2 6 5
36,050 | 68.84
65.04 | | 31-May | 8,837 | 48,086 | 14,354 | 133,374 | 100,841 | 89,008 | 54,221 | 3,805 | 17,420 | 95,624 | 91,784 | 104,066 | 99,288 | 56,577 | 85,092 | 40,393 | 62.05 | | 01-Jun
02-Jun | 11,453
14,264 | 52,166
55,631 | 19,611
26,672 | 151,789
175,560 | 116,226
133,439 | 101,436
115,850 | 62,757
71,240 | 7,267
13,993 | 24,421
45,059 | 112,019
126,404 | 96,989
100,547 | 111,107
116,341 | 109,314
119,223 | 95,536
110,093 | 76,578
87,451 | 44,674
47,995 | 58.34
54.88 | | 03-Jun | 16,101 | 59,167 | 34,109 | 192,276 | 146,822 | 128,987 | 80,970 | 24,684 | 65,296 | 144,070 | 105,173 | 123,208 | 127,799 | 128,766 | 98,386 | 50,643 | 51.47 | | 04-Jun
05-Jun | 19,357
22,327 | 61,945
66,297 | 43,105
52,851 | 202,031 | 159,177
173,983 | 144,344
163,454 | 93,466
110,194 | 48,956
79,463 | 91,922
119,856 | 158,702
169,664 | 113,050
119,805 | 131,763
139,275 | 135,371
145,544 | 140,454
148,894 | 110,260
123,151 | 50,582
50,863 | 45.88
41.30 | | 06-Jun | 25,645 | 72,750 | 58,258 | 224,484 | 189,568 | 177,523 | 128,291 | 112,416 | 134,363 | 173,986 | 128,700 | 146,994 | 155,954 | 170,030 | 135,642 | 52,396 | 38.63 | | 07-Jun
08-Jun | 29,453
32,728 | 79,781
90,859 | 60,351
61,700 | 238,069
252,481 | 202,074
210,504 | 196,832
212,926 | 146,806
173,425 | 139,672
170,597 | 144,041
168,979 | 179,741
186,107 | 137,796
149,118 | 159,687
174,252 | 167,091
174,728 | 178,595
158,365 | 147,142
158,341 | 55,055
57,386 | 37.42
36.24 | | 09-Jun | 34,980 | 98,844 | 65,243 | 268,175 | 217,521 | 224,341 | 193,901 | 200,299 | 197,221 | 194,029 | 163,759 | 183,692 | 184,633 | 170,030 | 171,191 | 61,147 | 35.72 | | 10-Jun
11-Jun | 38,455
40,945 | 104,049 | 72,544
84,576 | 281,031
288,908 | 225,120
232,999 | 232,350
241,913 | 213,176
230,413 | 212,309
224,135 | 227,173
252,591 | 205,582
216,776 | 178,975
195,230 | 195,818
205,481 | 196,293
212,474 | 178,595
199,387 | 182,962
195,307 | 64,226
66,657 | 35.10
34.13 | | 12-Jun | 43,027 | 110,702 | 96,160 | 293,752 | 241,586 | 255,205 | 252,119 | 232,366 | 269,085 | 223,282 | 210,189 | 213,737 | 236,403 | 208,453 | 206,148 | 69,283 | 33.61 | | 13-Jun
14-Jun | 45,446
48,281 | 114, 0 05
117,168 | 103,760
109,421 | 297,308
302,536 | 251,518
264,069 | 268,649
282,480 | 264,191
270,172 | 239,195
245,995 | 280,538
291,931 | 227,335
235,388 | 220,940
230,322 | 224,363
237,911 | 260,851
275,153 | 217,689
232,656 | 215,456
224,535 | 71,649
74,110 | 33.25
33.01 | | 15-Jun | 51,194 | 120,519 | 116,729 | 309,607 | 276,746 | 298,395 | 280,463 | 254,820 | 300,678 | 240,873 | 240,232 | 247,833 | 283,543 | 232,656 | 232,449 | 76,288 | 32.82 | | 16-Jun
17-Jun | 53,976
56,755 | 123,992
128,632 | 122,364
129,573 | 316,492
322,959 | 290,341
302,371 | 306,333
312,004 | 294,393
314,202 | 264,167
270,437 | 310,777
319,549 | 246,389
251,795 | 246,716
251,626 | 256,722
266,742 | 293,655
306,350 | 247,023
257,152 | 240,954
249,296 | 78,611
80,786 | 32.62
32.41 | | 18-Jun | 59,016 | 132,543 | 136,314 | 327,524 | 308,915 | 317,693 | 327,052 | 274,175 | 328,599 | 256,610 | 258,095 | 277,873 | 314,402 | 268,203 | 256,215 | 82,281 | 32.11 | | 19-Jun
20-Jun | 62,051
65,066 | 135,956
137,910 | 138,705
142,302 | 330,509
333,400 | 313,284
316,636 | 324,154
331,536 | 334,526
343,784 | 277,426
279,849 | 336,509
343,749 | 260,593
264,526 | 265,950
273,902 | 286,218
293,793 | 324,165
333,480 | 281,124
295,270 | 262,226
268,230 | 83,725
85,332 | 31.93
31.81 | | 21 - Jun | 67,601 | 140,133 | 146,444 | 336,846 | 319,962 | 339,680 | 350,943 | 281,910 | 350,490 | 268,450 | 279,672 | 300,962 | 343,772 | 304,020 | 273,635 | 86,832 | 31.73 | | 22-Jun
23-Jun | 69,669
72,510 | 142,718
145,583 | 150,398
154,294 | 340,843
345,206 | 324,449
331,480 | 347,665
355,193 | 356,465
362,378 | 284,673
288,042 | 359,516
367,526 | 274,829
284,940 | 286,657
294,356 | 309,830
315,680 | 353,929
364,095 | 311,850
318,208 | 279,535
285,678 | 88,547
90,069 | 31.68
31.53 | | 24-Jun | 75,126 | 147,460 | 159,511 | 349,857 | 337,809 | 361,202 | 369,119 | 290,992 | 374,494 | 300,648 | 299,938 | 319,607 | 373,435 | 324,171 | 291,669 | 91,430 | 31.35 | | 25-Jun
26-Jun | 77,256
79,027 | 150,473
152,446 | 164,615
168,210 | 353,255
355,667 | 342,712
347,128 | 356,428
372,066 | 375,622
380,007 | 292,577
294,958 | 380,225
385,635 | 317,165
329,665 | 305,535
311,913 | 326,029 | 383,445
390,257 | 331,831
341,331 | 297,410
302,453 | 92,599
94,003 | 31.17
31.08 | | 27-Jun | 81,205 | 153,761 | 171,631 | 358,174 | 349,860 | 376,804 | 387,231 | 297,993 | 390,788 | 336,675 | 318,472 | 329,269 | 399,491 | 351,686 | 307,360 | 95,512 | 31.07 | | 28-Jun
29-Jun | 82,308
83,912 | 155,458
156,908 | 175,955
179,800 | 361,123
364,544 | 352,034
354,164 | 381,575
385,879 | 393,959
398,412 | 300,257
302,404 | 395,810
399,388 | 342,319
349,155 | 324,731
332,951 |
335,571
342,061 | 406,372
410,871 | 362,496
372,935 | 312,141
316,670 | 96,954
98,072 | 31.06
30.97 | | 30-Jun | 85,544 | 158,807 | 183,265 | 366,922 | 356,477 | 392,025 | 404,861 | 304,543 | 403,159 | 353,791 | 338,448 | 349,415 | 414,846 | 382,048 | 321,082 | 99,261 | 30,91 | | 01 –Jul
02 – Jul | 87,131
89,664 | 161,458
163,982 | 186,824
190,189 | 369,645
372,251 | 358,667
363,087 | 398,131
404,244 | 413,087
420,641 | 307,163
309,771 | 406,743
409,895 | 355,803
359,209 | 345,050
349,730 | 357,345
362,641 | 419,169
424,236 | 389,351
394,460 | 325,398
329,571 | 100,377
101,282 | 30.85
30.73 | | 03-Jul | 92,191 | 186,841 | 194,293 | 374,799 | 368,838 | 410,270 | 429,222 | 311,590 | 412,206 | 363,305 | 353,952 | 367,617 | 428,918 | 400,795 | 333,917 | 102,180 | 30.60 | | 04 – Jul
05 – Jul | 95,171
97,440 | 170,647
173,655 | 197,227
200,106 | 378,893
383,149 | 374,083
379,078 | 417,213
422,560 | 435,737
442,399 | 315,126
318,380 | 414,011
415,510 | 370,405
374,756 | 357,484
360,788 | 374,986
385,725 | 434,583
442,581 | 407,475
413,320 | 338,789
343,532 | 103,108
104,332 | 30.43
30.37 | | 06-Jul
07-Jul | 99,063
100,215 | 175,651
176,543 | 203,131 | 386,625 | 385,378 | 426,533 | 447,848
451,888 | 323,044 | 418,319 | 378,149 | 364,298 | 395,749 | 450,330 | 419,533 | 348,118 | 105,660 | 30.35
30.37 | | 07-3ul | 100,215 | 176,543 | 206,422
209,417 | 390,488
394,262 | 391,549
395,539 | 430,742
434,822 | 455,794 | 326,671
330,564 | 421,310
424,170 | 383,766
390,382 | 368,622
377,121 | 405,965
417,098 | 456,030
461,222 | 425,754
432,822 | 352,570
357,349 | 107,071
108,479 | 30.36 | | 09-Jul | 101,993 | 181,824 | 212,234 | 397,711 | 397,749 | 438,175 | 459,004 | 337,391 | 427,247 | 396,734 | 382,288 | 427,859 | 466,375 | 439,274 | 361,847 | 109,527 | 30.27 | | 10÷Jul
11−Jul | 104,086 | 186,033
189,717 | 215,676
221,639 | 400,653
402,924 | 399,819
401,799 | 441,819
446,273 | 461,931
465,539 | 347,998
353,455 | 432,682
437,797 | 405,319
410,641 | 386,635
396,255 | 437,365
445,818 | 472,995
478,397 | 443,883
448,360 | 367,018
371,621 | 110,416
111,187 | 30.08
29.92 | | 12-Jul | 104,427 | 192,979 | 226,427 | 406,392 | 405,219 | 450,814 | 469,819 | 359,784 | 442,839 | 416,398 | 404,136 | 457,771 | 487,735 | 453,177 | 376,994 | 112,778 | 29.92 | | 13-Jul
14-Jul | 104,594
104,884 | 196,123
200,247 | 228,152
229,831 | 408,657
411,253 | 409,251
413,590 | 455,357
461,176 | 474,401
480,974 | 365,036
371,149 | 446,535
450,065 | 422,981
429,420 | 411,223
418,235 | 467,100
477,370 | 499,167
507,373 | 457,145
464,642 | 381,837
387,158 | 114,689
116,645 | 30.04
30.13 | | 15-Jul | | 203,782 | 231,574
234,089 | 414,944 | 418,304 | 467,672 | 486,495 | 376,173 | 454,764 | 435,142 | 425,159 | 489,653 | 515,682 | 472,191 | 392,621 | 118,841 | 30.27 | | 16-Jul
17-Jul | 105,897
106,001 | 208,957
212,512 | 237,508 | 417,524
418,304 | 421,865
424,790 | 474,642
480,969 | 493,250
498,205 | 381,512
387,472 | 456,991
461,099 | 441,401
445,868 | 430,616
435,493 | 500,550
509,453 | 521,775
528,034 | 481,861
491,527 | 397,909
402,660 | 120,567
122,196 | 30.30
30.35 | | 18-Jul | 106,285 | 216,272 | 243,386 | 426,937 | 428,203 | 485,295 | 502,941 | 392,582 | 466,092 | 450,488 | 439,350 | 521,264 | 533,760 | 498,866 | 407,980 | 123,620 | 30.30 | | 19-Jul
20-Jul | 106,606
106,844 | 219,616
222,332 | 248,999
254,059 | 447,912
468,423 | 432,499
436,419 | 488,998
492,986 | 506,081
509,470 | 397,142
405,318 | 472,158
478,155 | 454,615
458,249 | 443,933
448,416 | 531,831
542,000 | 539,735
544,050 | 506,378
517,058 | 414,036
420,270 | 125,225
127,106 | 30.24
30,24 | | 21 -Jul | 106,925 | 224,915 | 257,865 | 484,164 | 440,468 | 497,449 | 512,674 | 409,446 | 482,901 | 460,690 | 452,380 | 550,639 | 546,584 | 527,324 | 425,317 | 128,858 | 30.30 | | | 106,943
106,958 | 226,927
228,842 | 261,058
263,201 | 490,730
496,517 | 444,339
447,438 | 502,330
505,933 | 516,454
519,659 | 412,604
415,474 | 486,309
489,218 | 461,963
462,965 | 455,177
458,606 | 559,547
567,650 | 549,041
552,942 | 537,025
546,041 | 429,318
432,960 | 130,459
132,072 | 30.39
30.50 | | | 106,998 | 231,024 | 264,554 | 501,580 | 450,499 | 509,836 | 521,857 | 417,636 | 491,851 | 463,590 | 462,506 | 573,900 | 555,825 | 550,285 | 435,853 | 133,186 | 30.56 | | 25-Jul
26-Jul | orangerio: | 232,136
232,907 | 266,177
267,433 | 504,971
507,464 | 453 873
456 469 | 514,371
518,210 | 523,794
525,481 | 420,085
422,059 | 494,143
495,942 | 465,604
465,972 | 466,529
470,671 | 579,203
584,909 | 557 875
560,132 | 553,350
557,771 | 438,509
440,888 | 134,176
135,265 | 30.60
30.68 | | 27-Jul | | 233,225 | 268,631 | 509,915 | 458,716 | 521,897 | 526,872 | 424,250 | 497,568 | 466,598 | 474,591 | 590,608 | 563,017 | 561,655 | 443,182 | 136,392 | 30.78 | | 28-Jul
29-Jul | | 233,612
233,977 | 269,329
269,729 | 512,700
516,386 | 461,091
462,517 | 527,131
531,269 | 527,876
528,767 | 427,089
429,902 | 499,365
500,928 | 469,092
471,433 | 478,043
481,519 | 595,534
599,684 | 564,951
567,759 | 566,447
571,801 | 445,662
448,049 | 137,576
138,791 | 30.87
30.98 | | 30-Jul | 3535335555555555 | 234,468 | 270,199 | 520,200 | 463,480 | 534,781 | 529,705 | 432,692 | 502,417 | 473,508 | 483,942 | 602,203 | 570,221 | 576,511 | 450,096 | 139,757 | 31.05 | | 31~Jul
01−Aug | | 235,171
235,929 | 270,552
271,377 | 524,002
527,398 | 464,656
465,167 | 536,816
538,528 | 530,798
531,845 | 434,540
435,610 | 503,676
504,848 | 475,734
478,460 | 485,862
487,300 | 603,754
606,053 | 572,771
576,610 | 579,412 | 451,754
443,549 | 140,459
141,798 | 31.09
31.97 | | 02-Aug | | 236,308 | 272,411 | 529,702 | 466,109 | 540,739 | 532,933 | 436,313 | 505,893 | 479,759 | 488,398 | 607,797 | 581,859 | | 445,018 | 142,560 | 32.03 | | 03-Aug
04-Aug | | 236,535
236,821 | 273,175
273,883 | 531,615
532,912 | 466,603
467,184 | 542,827
545,724 | 534,146
535,264 | | 506,663
507,477 | 481,461
482,960 | | | | | 411,635
412,555 | 143,798
144,313 | 34.93
34.98 | | 05-Aug | | 235,994 | 274,641 | 534,093 | 467,306 | | 536,273 | | 507,912 | 483,478 | | | | | 412,975 | 144,462 | 34,98 | | 06-Aug
07-Aug | | 237,097
237,173 | 275,518
276,133 | 535,263 | | | 536,806 | | 508,328
508,520 | | | | | | 413,264
413,373 | 144,537
144,482 | 34.97
34.95 | | 08-Aug | | | 276,299 | | | | | | 508,553 | | | | | | 413,393 | 144,469 | 34,95 | | 09-Aug | | | 276,538 | | | | | | 508,600 | | | | | | 413,421 | 144,449 | 34.94 | | | | : | | |--|---|---|-------| | | | | | | | | | | | | | | j nee | | | · | | | | | | | | | | | | | | | | | |